the primary alcohols i.e. acids during this oxidation process.
After separating the organic product layer from the reaction
mixture, the catalyst-cum-promoter, KI could be kept as such in
solution for further use or, the I2 may be regenerated by passing
O2 through the acidified inorganic end product.4b,11
(c) U. M. Lindstrom, Chem. Rev., 2002, 102, 2751; (d) S. Kobayashi
and K. Manabe, Acc. Chem. Res., 2002, 35, 209.
2 (a) M. Hudlicky, Oxidations in Organic Chemistry, American Chem-
ical Society, Washington, DC, 1990; (b) R. C. Larock, Comprehensive
Organic Transformation, A guide to functional group preparation,
VCH Publications, Inc., New York, 1989, p. 604-614.
Regarding the mechanism of the oxidation reaction, it is
proposed that the nucleophile alkoxide (formed by abstracting
acidic proton of alcoholic group by base) reacts with KI3
(generated in situ from I2 and KI),12 forms an intermediate state
A,10a which eliminates HI to generate aldehyde or ketones in the
reaction mixture, and finally the generated acid (HI) is being
scavenged by inorganic base to produce KI in water (Scheme 2).
3 (a) I. E. Marko, P. R. Giles, M. Tsukazaki, S. M. Brown and C. J.
Urch, Science, 1996, 274, 2044; (b) I. E. Marko, M. Tsukazaki,
P. R. Giles, M. S. Brown and C. J. Urch, Angew. Chem., Int. Ed.,
1997, 36, 2208; (c) B.-Z. Zhan, M. A. White, T.-K. Sham, J. A.
Pincock, R. J. Doucet, K. V. Ramana Rao, K. N. Robertson and
T. S. Cameron, J. Am. Chem. Soc., 2003, 125, 2195; (d) K. P. Peterson
and R. C. Larock, J. Org. Chem., 1998, 63, 3185; (e) S. S. Stahl,
J. L. Thorman, R. C. Nelson and M. A. Kozee, J. Am. Chem. Soc.,
2001, 123, 7188; (f) G.-J. ten Brink, I. W. C. E. Arends and R. A.
Sheldon, Science, 2000, 287, 1636; (g) D. R. Jensen, M. J. Schultz,
J. A. Mueller and M. S. Sigman, Angew. Chem., Int. Ed., 2003, 42,
3810; (h) M. Musawir, P. N. Davey, G. Kelly and I. V. Kozhevnikov,
Chem. Commun., 2003, 1414; (i) C. Li, P. Zheng, J. Li, H. Zhang, Y.
Cui, Q. Shao, X. Ji, J. Zhang, P. Zhao and Y. Xu, Angew. Chem., Int.
Ed., 2003, 42, 5063; (j) P. Gamez, I. W. C. E. Arends, J. Reedijk and
R. A. Sheldom, Chem. Commun., 2003, 2414.
4 For reviews of TEMPO–air–O2–DMSO–O3–NaOCl oxidized alco-
hol oxidations see: (a) W. Adam, C. R. Saha-Moller and P. A.
Ganeshpure, Chem. Rev., 2001, 101, 3499; (b) R. Liu, X. Liang,
C. Dong and X. Hu, J. Am. Chem. Soc., 2004, 126, 4112; (c) L. D.
Luna, G. Giacomelli and A. Porcheddu, J. Org. Chem., 2001, 66,
7907; (d) C. Bolm, A. S. Magnus and J. P. Hildebrand, Org. Lett.,
2000, 2, 1173; (e) P. L. Anelli, C. Biffi, F. Montanari and S. Quici,
J. Org. Chem., 1987, 52, 2559; (f) Z. R. Bright, C. R. Luyeye, A. S. M.
Morton, M. Sedenko, R. G. Landolt, M. J. Bronzi, K. M. Bohovic,
M. W. A. Gonser, T. E. Lapainis and W. H. Hendrickson, J. Org.
Chem., 2005, 70, 684.
Scheme 2 Proposed mechanism and tentative intermediates for the
anaerobic oxidation of alcohol.
In conclusion, we have discovered a highly efficient, mild
and inexpensive system that selectively oxidizes a wide range of
alcohols into aldehydes and ketones and it is free from oxygen-
containing oxidants, transition metals, and organic solvents
in the oxidation process. The system is applicable to a large-
scale production of aldehydes and ketones, and it is a green,
and economically viable anaerobic process for the oxidation of
alcohols to aldehydes and ketones.
5 H. Tohma, S. Takizawa, T. Maegawa and Y. Kita, Angew. Chem., Int.
Ed., 2000, 39, 1306.
6 L. A. Paquette, Encyclopedia of Reagents for Organic Synthesis, John
Wiley & Sons, New York, 1995, vol. 4, p.2796.
7 P. Gogoi, G. K. Sarma and D. Konwar, J. Org. Chem., 2004, 69,
5153.
Acknowledgements
8 P. Gogoi, P. Hazarika and D. Konwar, J. Org. Chem., 2005, 70, 1935.
9 The production of 4-methoxybenzaldehyde was carried out on a
∼13 g scale in 95% yield.
The authors acknowledge the Director, Dr P. G. Rao, the
Analytical Division of RRL, Jorhat, Assam, India, for their
help. Also, PG thanks CSIR, New Delhi for a grant of JRF
fellowship.
10 (a) J. Barluenga, M. Marco-Arias, F. Gonzalez-Bobes, A. Ballesteros
and J. M. Gonzalez, Chem. Commun., 2004, 2616; (b) S. Stavber, M.
Jereb and M. Zupan, Chem. Commun., 2002, 488.
11 J. D. Lee, Concise Inorganic Chemistry, ELBS edition of fourth
References
edition, Chapman & Hall Ltd., London, 1991, p. 555.
1 (a) Organic synthesis in water, ed. P. A. Grieco, Blackie Academic and
Professional, London, 1998; (b) C.-J. Li, and T.-H. Chan. Organic
Reactions in Aqueous Media, John Wiley & Sons, New York, 1997;
12 P. H. Svenssor and L. Kloo, Chem. Rev., 2003, 103, 1649.
13 The Aldrich Library of 13C and 1H NMR Spectra, ed. C. J. P. J. Behnke,
Aldrich, Milwaukee USA, 1985–1989.
O r g . B i o m o l . C h e m . , 2 0 0 5 , 3 , 3 4 7 3 – 3 4 7 5
3 4 7 5