Journal of Medicinal Chemistry
Article
as potential treatments for stage 2 human African trypanosomiasis. J.
Med. Chem. 2014, 57, 9855−9869.
(7) Brannigan, J. A.; Roberts, S. M.; Bell, A. S.; Hutton, J. A.;
Hodgkinson, M. R.; Tate, E. W.; Leatherbarrow, R. J.; Smith, D. F.;
Wilkinson, A. J. Diverse modes of binding in structures of Leishmania
major N-myristoyltransferase with selective inhibitors. IUCrJ 2014, 1,
250−260.
(8) Hutton, J. A.; Goncalves, V.; Brannigan, J. A.; Paape, D.; Wright,
M. H.; Waugh, T. M.; Roberts, S. M.; Bell, A. S.; Wilkinson, A. J.;
Smith, D. F.; Leatherbarrow, R. J.; Tate, E. W. Structure-based design
of potent and selective Leishmania N-myristoyltransferase inhibitors. J.
Med. Chem. 2014, 57, 8664−8670.
(9) Rackham, M. D.; Brannigan, J. A.; Rangachari, K.; Meister, S.;
Wilkinson, A. J.; Holder, A. A.; Leatherbarrow, R. J.; Tate, E. W.
Design and synthesis of high affinity inhibitors of Plasmodium
falciparum and Plasmodium vivax N-Myristoyltransferases directed by
ligand efficiency dependent lipophilicity (LELP). J. Med. Chem. 2014,
57, 2773−2788.
(10) Devadas, B.; Freeman, S. K.; Zupec, M. E.; Lu, H. F.;
Nagarajan, S. R.; Kishore, N. S.; Lodge, J. K.; Kuneman, D. W.;
McWherter, C. A.; Vinjamoori, D. V.; Getman, D. P.; Gordon, J. I.;
Sikorski, J. A. Design and synthesis of novel imidazole-substituted
dipeptide amides as potent and selective inhibitors of Candida
albicans myristoylCoA:protein N-myristoyltransferase and identifica-
tion of related tripeptide inhibitors with mechanism-based antifungal
activity. J. Med. Chem. 1997, 40, 2609−2625.
(11) Brown, D. L.; Devadas, B.; Lu, H. F.; Nagarajan, S.; Zupec, M.
E.; Freeman, S. K.; McWherter, C. A.; Getman, D. P.; Sikorski, J. A.
Replacements for lysine in L-seryl-L-lysyl dipeptide amide inhibitors
of Candida albicans myristoyl-CoA: Protein N-myristoyltransferase.
Bioorg. Med. Chem. Lett. 1997, 7, 379−382.
(12) Devadas, B.; Zupec, M. E.; Freeman, S. K.; Brown, D. L.;
Nagarajan, S.; Sikorski, J. A.; McWherter, C. A.; Getman, D. P.;
Gordon, J. I. Design and synthesis of potent and selective dipeptide
Inhibitors of Candida-Albicans myristoyl-Coa-Protein N-Myristoyl-
transferase. J. Med. Chem. 1995, 38, 1837−1840.
(13) Nagarajan, S. R.; Devadas, B.; Zupec, M. E.; Freeman, S. K.;
Brown, D. L.; Lu, H. F.; Mehta, P. P.; Kishore, N. S.; McWherter, C.
A.; Getman, D. P.; Gordon, J. I.; Sikorski, J. A. Conformationally
constrained [p-(omega-aminoalkyl)phenacetyl]-L-seryl-L-lysyl dipep-
tide amides as potent peptidomimetic inhibitors of Candida albicans
and human myristoyl-CoA:protein N-myristoyl transferase. J. Med.
Chem. 1997, 40, 1422−1438.
(14) Sikorski, J. A.; Devadas, B.; Zupec, M. E.; Freeman, S. K.;
Brown, D. L.; Lu, H. F.; Nagarajan, S.; Mehta, P. P.; Wade, A. C.;
Kishore, N. S.; Bryant, M. L.; Getman, D. P.; McWherter, C. A.;
Gordon, J. I. Selective peptidic and peptidomimetic inhibitors of
Candida albicans myristoylCoA:protein N-myristoyltransferase: A
new approach to antifungal therapy. Biopolymers 1997, 43, 43−71.
(15) Ebiike, H.; Masubuchi, M.; Liu, P. L.; Kawasaki, K.; Morikami,
K.; Sogabe, S.; Hayase, M.; Fujii, T.; Sakata, K.; Shindoh, H.;
Shiratori, Y.; Aoki, Y.; Ohtsuka, T.; Shimma, N. Design and synthesis
of novel benzofurans as a new class of antifungal agents targeting
fungal N-myristoyltransferase. Part 2. Bioorg. Med. Chem. Lett. 2002,
12, 607−610.
(16) Kawasaki, K.; Masubuchi, M.; Morikami, K.; Sogabe, S.;
Aoyama, T.; Ebiike, H.; Niizuma, S.; Hayase, M.; Fujii, T.; Sakata, K.;
Shindoh, H.; Shiratori, Y.; Aoki, Y.; Ohtsuka, T.; Shimma, N. Design
and synthesis of novel benzofurans as a new class of antifungal agents
targeting fungal N-myristoyltransferase. Part 3. Bioorg. Med. Chem.
Lett. 2003, 13, 87−91.
(17) Masubuchi, M.; Ebiike, H.; Kawasaki, E.; Sogabe, S.; Morikami,
K.; Shiratori, Y.; Tsujii, S.; Fujii, T.; Sakata, K.; Hayase, M.; Shindoh,
H.; Aoki, Y.; Ohtsuka, T.; Shimma, N. Synthesis and biological
activities of benzofuran antifungal agents targeting fungal N-
myristoyltransferase. Bioorg. Med. Chem. 2003, 11, 4463−4478.
(18) Masubuchi, M.; Kawasaki, K.; Ebiike, H.; Ikeda, Y.; Tsujii, S.;
Sogabe, S.; Fujii, T.; Sakata, K.; Shiratori, Y.; Aoki, Y.; Ohtsuka, T.;
Shimma, N. Design and synthesis of novel benzofurans as a new class
of antifungal agents targeting fungal N-myristoyltransferase. Part 1.
Bioorg. Med. Chem. Lett. 2001, 11, 1833−1837.
(19) Yamazaki, K.; Kaneko, Y.; Suwa, K.; Ebara, S.; Nakazawa, K.;
Yasuno, K. Synthesis of potent and selective inhibitors of Candida
albicans N-myristoyltransferase based on the benzothiazole structure.
Bioorg. Med. Chem. 2005, 13, 2509−2522.
(20) Ebara, S.; Naito, H.; Nakazawa, K.; Ishii, F.; Nakamura, M.
FTR1335 is a novel synthetic inhibitor of Candida albicans N-
myristoyltransferase with fungicidal activity. Biol. Pharm. Bull. 2005,
28, 591−595.
(21) Berthiaume, L. G.; Beauchamp, E.; Perinpanaygam, C. M. A.;
Yap, C. Synthetic Lethality and the Treatment of Cancer Deficient in
NMT2 Comprising an N-myristoyltransferase (NMT) Inhibitor. WO
2013013302, 2013.
(22) Gelb, M. H.; Van Voorhis, W. C.; Buckner, F. S.; Yokoyama, K.;
Eastman, R.; Carpenter, E. P.; Panethymitaki, C.; Brown, K. A.;
Smith, D. F. Protein farnesyl and N-myristoyl transferases: piggy-back
medicinal chemistry targets for the development of antitrypanosoma-
tid and antimalarial therapeutics. Mol. Biochem. Parasitol. 2003, 126,
155−163.
(23) Price, H. P.; Goulding, D.; Smith, D. F. ARL1 has an essential
role in Trypanosoma brucei. Biochem. Soc. Trans. 2005, 33, 643−645.
(24) Hopkins, A. L.; Groom, C. R.; Alex, A. Ligand efficiency: a
useful metric for lead selection. Drug Discovery Today 2004, 9, 430−
431.
(25) Leeson, P. D.; Springthorpe, B. The influence of drug-like
concepts on decision-making in medicinal chemistry. Nat. Rev. Drug
Discovery 2007, 6, 881−890.
(26) Miyaura, N.; Ishiyama, T.; Sasaki, H.; Ishikawa, M.; Sato, M.;
Suzuki, A. Palladium-catalyzed intermolecular and intramolecular
cross-coupling reactions of B-alkyl-9-borabicyclo[3.3.1]nonane de-
rivatives with 1-halo-1-alkenes or haloarenes - syntheses of function-
alized alkenes, arenes, and cycloalkenes via a hydroboration coupling
sequence. J. Am. Chem. Soc. 1989, 111, 314−321.
(27) Chemler, S. R.; Trauner, D.; Danishefsky, S. J. The B-alkyl
Suzuki-Miyaura cross-coupling reaction: development, mechanistic
study, and applications in natural product synthesis. Angew. Chem., Int.
Ed. 2001, 40, 4544−4568.
(28) Jamieson, C.; Moir, E. M.; Rankovic, Z.; Wishart, G. Medicinal
chemistry of hERG optimizations: Highlights and hang-ups. J. Med.
Chem. 2006, 49, 5029−5046.
(29) Waring, M. J.; Johnstone, C. A quantitative assessment of
hERG liability as a function of lipophilicity. Bioorg. Med. Chem. Lett.
2007, 17, 1759−1764.
(30) Lankas, G. R.; Cartwright, M. E.; Umbenhauer, D. P-
glycoprotein deficiency in a subpopulation of CF-1 mice enhances
avermectin-induced neurotoxicity. Toxicol. Appl. Pharmacol. 1997,
143, 357−365.
(31) Otwinowski, Z.; Minor, W. Processing of X-ray Diffraction Data
Collected in Oscillation Mode. Methods Enzymol. 1997, 276, 307−
326.
(32) Kabsch, W. Integration, scaling, space-group assignment and
post-refinement. Acta Crystallogr., Sect. D: Biol. Crystallogr. 2010, 66,
133−144.
(33) Evans, P. Scaling and assessment of data quality. Acta
Crystallogr., Sect. D: Biol. Crystallogr. 2006, 62, 72−82.
(34) Vagin, A.; Teplyakov, A. Molecular replacement with
MOLREP. Acta Crystallogr., Sect. D: Biol. Crystallogr. 2010, 66, 22−
25.
(35) Murshudov, G. N.; Skubak, P.; Lebedev, A. A.; Pannu, N. S.;
Steiner, R. A.; Nicholls, R. A.; Winn, M. D.; Long, F.; Vagin, A. A.
REFMAC5 for the refinement of macromolecular crystal structures.
Acta Crystallogr., Sect. D: Biol. Crystallogr. 2011, 67, 355−367.
(36) Emsley, P.; Cowtan, K. Coot: model-building tools for
molecular graphics. Acta Crystallogr., Sect. D: Biol. Crystallogr. 2004,
60, 2126−2132.
(37) Schuttelkopf, A. W.; van Aalten, D. M. PRODRG: a tool for
high-throughput crystallography of protein-ligand complexes. Acta
Crystallogr., Sect. D: Biol. Crystallogr. 2004, 60, 1355−1363.
P
J. Med. Chem. XXXX, XXX, XXX−XXX