iron(II) alkyl halide complex. Organometallics 33, 1917–1920 (2014).
It is important to note that Co sits on a −3 crystallographic
position and therefore only four multipole parameters are
symmetry-allowed. The most important parameter in this re-
spect is the quadrupole along the z-axis. However, in the least
squares refinement, this parameter correlates strongly with
the thermal parameters, including U33, which represents the
atomic vibration along the same z-direction. To avoid this
correlation, we separated the refinement of multipole param-
eters from the refinement of atomic positions and vibrations.
We first attempted a high angle refinement of the atomic vi-
brations and positions, but the resulting refinement of mul-
tipole parameters led to unphysical values, for instance
atomic charges derived from monopole values of more than
+2, and κ-parameters deviating by more than 20% from
unity. Instead, we chose to use the full data set to inde-
pendently refine the atomic positions and vibrations of all at-
oms, subsequently fixing these values and refining the
multipole parameters until convergence. This approach rep-
resented the final model, from which we extracted the d-or-
bital population ratios. In the final model, the charge on Co
was determined to be +1.3.
11. P. P. Power, Stable two-coordinate, open-shell (d1-d9) transition metal complexes.
12. T. Viefhaus, W. Schwarz, K. Hübler, K. Locke, J. Weidlein, Das unterschiedliche
Reaktionsverhalten von basefreiem Tris(trimethylsilyl)methyl-Lithium gegenüber
den Trihalogeniden der Erdmetalle und des Eisens. Z. Anorg. Allg. Chem. 627, 715
13. N. H. Buttrus, C. Eaborn, P. B. Hitchcock, J. D. Smith, A. C. Sullivan, Preparation
and crystal structure of
a
two-coordinate manganese compound,
bis[(tris(trimethyl)silylmethyl)]manganese. J. Chem. Soc. Chem. Commun. 1985,
14. C.-Y. Lin, J. C. Fettinger, N. F. Chilton, A. Formanuik, F. Grandjean, G. J. Long, P. P.
Power, Salts of the two-coordinate homoleptic manganese(I) dialkyl anion
[Mn{C(SiMe3)3}2]− with quenched orbital magnetism. Chem. Commun. 51, 13275–
15. X.-N. Yao, J.-Z. Du, Y.-Q. Zhang, X.-B. Leng, M.-W. Yang, S.-D. Jiang, Z.-X. Wang, Z.-
W. Ouyang, L. Deng, B.-W. Wang, S. Gao, Two-coordinate Co(II) imido complexes
as outstanding single-molecule magnets. J. Am. Chem. Soc. 139, 373–380 (2017).
16. P. E. Kazin, M. A. Zykin, L. A. Trusov, A. A. Eliseev, O. V. Magdysyuk, R. E. Dinnebier,
R. K. Kremer, C. Felser, M. Jansen, A Co-based single-molecule magnet confined
in a barium phosphate apatite matrix with a high energy barrier for magnetization
17. H. Li, A. J. A. Aquino, D. B. Cordes, F. Hung-Low, W. L. Hase, C. Krempner, A
zwitterionic carbanion frustrated by boranes—dihydrogen cleavage with weak
Lewis acids via an “inverse” frustrated Lewis pair approach. J. Am. Chem. Soc.
REFERENCES AND NOTES
1. I. G. Rau, S. Baumann, S. Rusponi, F. Donati, S. Stepanow, L. Gragnaniello, J. Dreiser,
C. Piamonteze, F. Nolting, S. Gangopadhyay, O. R. Albertini, R. M. Macfarlane, C.
P. Lutz, B. A. Jones, P. Gambardella, A. J. Heinrich, H. Brune, Reaching the
magnetic anisotropy limit of a 3d metal atom. Science 344, 988–992 (2014).
18. S. S. Al-Juaid, C. Eaborn, A. Habtemariam, P. B. Hitchcock, J. D. Smith, K.
Tavakkoli, A. D. Webb, The preparation and crystal structures of the compounds
(Ph2MeSi)3CMCl (M = Zn, Cd, or Hg). J. Organomet. Chem. 462, 45–55 (1993).
2. W. M. Reiff, A. M. LaPointe, E. H. Witten, Virtual free ion magnetism and the absence
of Jahn-Teller distortion in a linear two-coordinate complex of high-spin iron(II). J.
3. J. M. Zadrozny, M. Atanasov, A. M. Bryan, C.-Y. Lin, B. D. Rekken, P. P. Power, F.
Neese, J. R. Long, Slow magnetization dynamics in a series of two-coordinate
4. J. M. Zadrozny, D. J. Xiao, M. Atanasov, G. J. Long, F. Grandjean, F. Neese, J. R. Long,
Magnetic blocking in a linear iron(I) complex. Nat. Chem. 5, 577–581 (2013).
5. D. Gatteschi, R. Sessoli, J. Villain, Molecular Nanomagnets (Oxford Univ. Press,
2006).
6. J. M. Zadrozny, D. J. Xiao, J. R. Long, M. Atanasov, F. Neese, F. Grandjean, G. J. Long,
Mössbauer spectroscopy as a probe of magnetization dynamics in the linear
iron(I) and iron(II) complexes [Fe(C(SiMe3)3)2]1−/0. Inorg. Chem. 52, 13123–13131
7. M. Atanasov, J. M. Zadrozny, J. R. Long, F. Neese, A theoretical analysis of chemical
bonding, vibronic coupling, and magnetic anisotropy in linear iron(II) complexes
with single-molecule magnet behavior. Chem. Sci. 4, 139–156 (2013).
8. The term “spin-reversal barrier” is somewhat ambiguous in the single-molecule
magnet literature. In the systems described here we define it as the separation
between ground and first excited MJ (or MS) states. Thus, “over-barrier” relaxation
refers to excitation from MJ = +J to MJ = +(J – 1) states followed by relaxation to
19. S. S. Al-Juaid, C. Eaborn, S. El-Hamruni, A. Farook, P. B. Hitchcock, M. Hopman, J.
D. Smith, W. Clegg, K. Izod, P. O’Shaughnessy, Tris(triorganosilyl)methyl
derivatives of potassium and lithium bearing dimethylamino or methoxy
substituents at silicon. Crystal structures of KC(SiMe3)2(SiMe2NMe2),
KC(SiMe2NMe2)3 and [LiC(SiMe3)(SiMe2OMe)2]2. J. Chem. Soc. Dalton Trans.
20. M. Westerhausen, B. Rademacher, W. Poll, Trimethylsilyl-substituierte Derivate
des Dimethylzinks—Synthese, spektroskopische Charakterisierung und Struktur.
21. M. Nishio, The CH/π hydrogen bond in chemistry. Conformation, supramolecules,
optical resolution and interactions involving carbohydrates. Phys. Chem. Chem.
22. C.-Y. Lin, J.-D. Guo, J. C. Fettinger, S. Nagase, F. Grandjean, G. J. Long, N. F.
Chilton, P. P. Power, Dispersion force stabilized two-coordinate transition metal–
amido complexes of the −N(SiMe3)Dipp (Dipp = C6H3-2,6-Pri2) ligand: Structural,
spectroscopic, magnetic, and computational studies. Inorg. Chem. 52, 13584–
23. A. J. Wallace, B. E. Williamson, D. L. Crittenden, CASSCF-based explicit ligand field
models clarify the ground state electronic structures of transition metal
phthalocyanines (MPc; M = Mn, Fe, Co, Ni, Cu, Zn). Can. J. Chem. 94, 1163–1168
24. R. F. W. Bader, Atoms in Molecules: A Quantum Theory (Clarendon Press, 1990).
25. R. Marx, F. Moro, M. Dörfel, L. Ungur, M. Waters, S. D. Jiang, M. Orlita, J. Taylor, W.
Frey, L. F. Chibotaru, J. van Slageren, Spectroscopic determination of crystal field
splittings in lanthanide double deckers. Chem. Sci. 5, 3287–3293 (2014).
the MJ
= –J state (an Orbach mechanism). “Through-barrier” relaxation
mechanisms are any that allow the system to go from MJ = +J to MJ = –J without
excitation to the MJ = +(J – 1) state.
9. M. Atanasov, D. Aravena, E. Suturina, E. Bill, D. Maganas, F. Neese, First principles
approach to the electronic structure, magnetic anisotropy and spin relaxation in
mononuclear 3d-transition metal single molecule magnets. Coord. Chem. Rev.
10. P. Zhao, Z. Brown, J. C. Fettinger, F. Grandjean, G. J. Long, P. P. Power, Synthesis
and structural characterization of a dimeric cobalt(I) homoleptic alkyl and an
26. Y. Rechkemmer, F. D. Breitgoff, M. van der Meer, M. Atanasov, M. Hakl, M. Orlita,
P. Neugebauer, F. Neese, B. Sarkar, J. van Slageren, A four-coordinate cobalt(II)
single-ion magnet with coercivity and a very high energy barrier. Nat. Commun. 7,
27. D. Gatteschi, R. Sessoli, Quantum tunneling of magnetization and related
phenomena in molecular materials. Angew. Chem. Int. Ed. 42, 268–297 (2003).
First release: 15 November 2018
(Page numbers not final at time of first release) 10