UPDATES
Surya Srinivas Kotha et al.
[6] a) R. H. Crabtree, H. Felkin, G. E. Morris, J. Organo-
met. Chem. 1977, 141, 205; b) R. H. Crabtree, H.
Felkin, T. Fillebeenkhan, G. E. Morris, J. Organomet.
Chem. 1979, 168, 183; c) R. H. Crabtree, Acc. Chem.
Res. 1979, 12, 331; d) B. W. Stenberg, A. Pfaltz, Adv.
Synth. Catal. 2008, 350, 174; e) S. P. Smidt, N. Zimmer-
mann, M. Studer, A. Pfaltz, Chem. Eur. J. 2004, 10,
4685; f) J. W. Suggs, S. D. Cox, R. H. Crabtree, J. M.
Quirk, Tetrahedron Lett. 1981, 22, 303.
[7] a) M. W. Van Laren, C. J. Elsevier, Angew. Chem. 1999,
111, 3926; Angew. Chem. Int. Ed. Engl. 1999, 38, 3715;
b) P. Hauwert, G. Maestri, J. W. Sprengers, M. Catella-
ni, C. J. Elsevier, Angew. Chem. 2008, 120, 3267;
Angew. Chem. Int. Ed. 2008, 47, 3223; c) K. Nagayama,
I. Shimizu, A. Yamamoto, Chem. Lett. 1998, 1143;
d) K. Nagayama, I. Shimizu, A. Yamamoto, Bull.
Chem. Soc. Jpn. 2001, 74, 1803.
[8] a) G. Zhang, B. L. Scott, S. K. Hanson, Angew. Chem.
2012, 124, 12268; Angew. Chem. Int. Ed. 2012, 51,
12102; b) E. J. Daida, J. C. Peters, Inorg. Chem. 2004,
43, 7474; c) S. C. Bart, E. Lobkovsky, P. J. Chirik, J.
Am. Chem. Soc. 2004, 126, 13794; d) R. Langer, G.
Leitus, Y. B. David, D. Milstein, Angew. Chem. 2011,
123, 2168; Angew. Chem. Int. Ed. 2011, 50, 552; e) C. P.
Casey, H. Guan, J. Am. Chem. Soc. 2007, 129, 5816.
[9] L. He, J. Ni, L.-C. Wang, F.-J. Yu, Y. Cao, H.-Y. He, K.-
N. Fan, Chem. Eur. J. 2009, 15, 11833.
[14] a) D. Gulcemal, A. G. Gokce, S. Gulcemal, B. Cetin-
kaya, RSC Adv. 2014, 4, 26222; b) P. Huang, W. Tang,
G. Tan, W. Zeng, Y. Li, Q. Zhang, B. Chen, Asian J.
Chem. 2014, 26, 8248.
[15] N. Azizi, E. Batebi, S. Bagherpour, H. Ghafuri, RSC
Adv. 2012, 2, 2289.
[16] a) D. Ganapathy, G. Sekar, Org. Lett. 2014, 16, 3856;
b) D. Ganapathy, S. S. Kotha, G. Sekar, Tetrahedron
Lett. 2015, 56, 175; c) D. Ganapathy, G. Sekar, Catal.
Commun. 2013, 39, 50; d) N. Sharma, G. Sekar, Adv.
Synth. Catal. 2016, 358, 314.
[17] W. K. Cho, J. K. Lee, S. M. Kang, Y. S. Chi, H.-S. Lee,
I. S. Choi, Chem. Eur. J. 2007, 13, 6351.
[18] Pressure of a hydrogen balloon is 1 atm. We have also
carried out three different reactions of 4-methylbenzal-
dehyde 1 (3 mmol) with 1 mol% of Pd-BNP in 5 mL
water in a Shaker hydrogenator apparatus with 1 atm,
2 atm and 4 atm hydrogen pressure. The isolated yields
of the product 2a for all these cases are 93%, 94% and
97% with different reaction times. The reaction with
1 atm hydrogen pressure was completed within 17 h,
but 2 atm and 4 atm hydrogen pressure reactions took
12 h and 5 h for completion. In higher atmospheric hy-
drogen pressures, reduction of the reaction time was
observed. Increasing the H2 pressure increases the rate
of reaction without affecting the yield of the product.
[19] When the reduction reaction of 4-methylbenzaldehyde
1 with 1 mol% of catalyst was carried out with different
lipophilic solvents such a carbon tetrachloride, benzene,
toluene and hexanes, only 10–20% yields of the prod-
uct 2a were isolated after 24 h of reaction. These obser-
vations show that the rate of reaction is accelerated
when water is used as solvent and reduction is more fa-
vorable in water than in the lipophilic solvents.
[10] a) P. N. Rylander, Hydrogenation methods, Academic
Press, Orlando, FL, 1985; b) E. L. Muetterties, J. R.
Bleeke, Acc. Chem. Res. 1979, 12, 324.
[11] Z. Jia, F. Zhou, M. Liu, X. Li, A. S. C. Chan, C.-J. Li,
Angew. Chem. 2013, 123, 12087; Angew. Chem. Int. Ed.
2013, 52, 11871.
[12] a) D. Astruc, Nanoparticles and Catalysis, Wiley-VCH,
Weinheim, 2007; b) D. Astruc, F. Lu, J. R. Aranzaes,
Angew. Chem. 2005, 117, 8062; Angew. Chem. Int. Ed.
2005, 44, 7852.
[20] We have performed the reduction reaction of 0.5 mmol
of 4-methylbenzaldehyde 1 with 1 mL and 0.5 mL of
water, 83% and 55% yields of alcohol 2a were isolated.
The yield of the product 2a was decreased by increas-
ing the concentration of the reaction.
[13] H. P. Hemantha, V. V. Sureshbabu, Org. Biomol. Chem.
2011, 9, 2597.
1698
ꢀ 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Adv. Synth. Catal. 2016, 358, 1694 – 1698