Cyclic Urea HIV Protease Inhibitors
J. Am. Chem. Soc., Vol. 120, No. 19, 1998 4571
potency against resistant variants that retain the favorable
physicochemical properties of the initial series.9
which the active site of the receptor is used as a negative mold
for the unbiased construction of novel ligands and fragments
are fitted into the active site with fast scoring algorithms and
in some cases connected to form potent inhibitors, has also been
applied to HIV protease. Developing quantitative structure-
activity data from both ligand and macromolecular structure has
In this project, as in most drug discovery efforts, once a new
series of biologically active ligands with adequate in vitro
properties is identified it is necessary to optimize the physical
properties of the lead compound to obtain desired in vivo
properties for clinical use; these properties include oral bio-
availability, safety, stability, and ease of synthesis and formula-
tion. In the process of modulating physical properties the target
activity of the lead series is frequently lost or diminished,
resulting in a time-consuming cycle of analogue synthesis and
testing. Traditionally this process has been successfully ad-
dressed by applying medicinal chemistry and quantitative
structure activity relationship (QSAR) analyses, but these
methods do not adequately take into account the effect of
modifications of the ligand on its three-dimensional shape, either
free or bound to the enzyme. Computational methods that
provide even a crude estimate of the binding affinity of
suggested novel scaffolds and functional groups for HIV-1 PR
can assist medicinal chemists in prioritizing the large number
of possible candidate ligands conceived in their effort to balance
potency against the target receptor with the required physical
properties.10
1
5
yielded interesting results in HIV protease and phospholipase
1
6
A2.
A less sophisticated but more rapid approach is to consider
a potent, selective ligand with a defined manner of binding to
a known receptor as a positive mold and to screen novel
proposed ligands by their ability to attain the shape and
electrostatic character of this known reference compound:17
essentially a molecular field analysis in which the “field” is
defined by the shape of a single bound ligand of known high
affinity. If a proposed new compound cannot project the
important recognition elements into the correct regions of space
in an energetically favorable fashion, i.e., with internal strain
energy at or near its global minimum, then it is rejected as a
synthetic target. If the required shape is found among a large
number of other low-energy conformations that do not provide
a good match to the reference compound, then the target is
intermediate in quality; and if the proposed structure displays a
strong energetic bias toward the required shape, then it is,
relatively speaking, an attractive candidate for experimental
Considerable progress toward this endsthe qualitative as-
sessment of the affinity of a hypothetical ligand for a receptorshas
been made by the development of 3D QSAR and Molecular
Field Analysis models,11 wherein the activities of known
analogues are used to infer a set of binding determinants or a
receptor field, and the activity of a new analogue is predicted
based on interactions with that field. Docking,12 with and
without flexibility of the ligand and the protein, has been used
to evaluate modifications of known inhibitors and to screen
three-dimensional structure databases for novel ligands. Free
energy perturbation methods have been used to rationalize
observed binding affinity changes in stereoisomeric ligands or
isosteric replacements of small groups.13 De novo design, in
1
8
validation.
In practice, many flexible compounds that are proposed as
mimetics of a ligand whose binding conformation is known do
(12) (a) Meng, E. C.; Gschwend, D. A.; Blaney, J. M.; Kuntz, I. D.
Proteins: Struct., Funct., Genet. 1993, 17, 266-278. (b) Stoddard, B. L.;
Koshland, D. E., Jr. Proc. Natl. Acad. Sci. U.S.A. 1993, 90, 1146-1153.
(
c) Yamada, M.; Itai, A. Chem. Pharm. Bull. 1993, 41, 1203-5. (d) Cherfils,
J.; Janin, J. Curr. Opin. Struct. Biol. 1993, 3, 265-269. (e) Di Nola, A.;
Roccatano, D.; Berendsen, H. J. C. Proteins: Struct., Funct., Genet. 1994,
1
9, 174-82. (f) Goodsell, D. S.; Olson, A. J. Proteins: Struct., Funct.,
Genet. 1990, 8, 195-202. (f) Goodsell, D. S.; Lauble, H.; Stout, C. D.;
Olson, A. J. Proteins: Struct., Funct., Genet. 1993, 17, 1-10. (g) Kearsley,
S. K.; Underwood, D. J.; Sheridan, R. J. Comput.-Aided Mol. Des. 1994,
8, 565-582. (h) Luty, B. A.; Wasserman, Z. R.; Stouten, P. F. W.; Hodge,
C. N.; Zacharias, M.; McCammon, J. A. J. Comput. Chem. 1995, 16, 454-
464. (i) Guarnieri, F.; Wilson, S. R. J. Comput. Chem. 1995, 16, 648-653.
(j) Wasserman, Z. R.; Hodge, C. N. Proteins: Struct., Funct., Genet.1996,
24, 227-237.
14
(6) (a) Erickson-Viitanan, S.; Klabe, R. M.; Cawood, P. G.; O’Neal, P.
L.; Meek, J. L. Antimicrob. Agents Chemother. 1994, 38, 1628-1634. (b)
Grubb, M. F.; Wong, Y. N.; Burcham, D. L.; Saxton, P. L.; Quon, C. Y.;
Huang, S. M. Drug Metab. Dispos. 1994, 22, 709-712. (c) Rayner, M.
M.; Cordova, B. C.; Meade, R. P.; Aldrich, P. E.; Jadhav, P. K.; Ru, Y.;
Lam, P. Y. S. Antimicrob. Agents Chemother. 1994, 38, 1635-1640. (d)
Wong, Y. N.; Burcham, D. L.; Saxton, P. L.; Erickson-Viitanen, S.; Grubb,
M. F.; Quon, C. Y.; Huang, S.-M. Biopharm. Drug Dispos. 1994, 15, 535-
(13) (a) Cieplak, P.; Kollman, P. A. J. Comput.-Aided Mol. Des. 1993,
7(3), 291-304. (b) DeBolt, S. E.; Pearlman, D. A.; Kollman, P. A. J.
Comput. Chem. 1994, 15, 351-373. (c) Ferguson, D. M.; Radmer, R. J.;
Kollman, P. A. J. Med. Chem. 1991, 34, 2654-2659. (d) Hansson, T.;
Aaqvist, J. Protein Eng. 1995, 8, 1137-1144. (e) Rao, B. G.; Murcko, M.
A. J. Comput. Chem. 1994, 15, 1241-1253. (f) Reddy, M. R.; Viswanadhan,
V. N.; Weinstein, J. N. Proc. Natl. Acad. Sci. U.S.A. 1991, 88, 10287-
10291. (g) Reddy, M. R.; Varney, M. D.; Kalish, V.; Viswanadhan, V. N.;
Appelt, K. J. Med. Chem. 1994, 37, 1145-1152. (h) Varney, M. D.; Appelt,
K.; Kalish, V.; Reddy, M. R.; Tatlock, J.; Palmer, C. L.; Romines, W. H.;
Wu, B.-W.; Musick, L. J. Med. Chem. 1994, 37, 2274-2284.
(14) (a) Clark, T. D.; Ghadiri, M. R. J. Am. Chem. Soc. 1995, 117,
12364-12365. (b) Pearlman, D. A.; Murcko, M. A. J. Comput. Chem. 1993,
14, 1184-1193. (c) Baca, M.; Alewood, P. F.; Kent, S. B. H. Protein Sci.
1993, 2, 1085-1091. (d) ibid. idem., 623-32. (e) Boehm, H.-J. J. Comput.-
Aided Mol. Des. 1994, 8, 243-256. (f) Rotstein, S. H.; Murcko, M. A. J.
Med. Chem. 1993, 36, 1700-1710. (g) Bures, M. G.; Hutchins, C. W.;
Maus, M.; Kohlbrenner, W.; Kadam, S.; Erickson, J. W. Tetrahedron
Comput. Methodol. 1990, 3, 673-680. (h) Roe, D. C.; Kuntz, I. D. J.
Comput.-Aided Mol. Des. 1995, 9, 269-282. (i) Waszkowycz, B.; Clark,
D. E.; Frenkel, D.; Li, J.; Murray, C. W.; Robson, B.; Westhead, D. R. J.
Med. Chem. 1994, 37, 3994-4002.
(15) (a) Verkhivker, G. M.; Rejto, P. A. Proc. Natl. Acad. Sci. U.S.A.
1996, 93, 60-64. (b) Verkhivker, G.; Appelt, K.; Freer, S. T.; Villafranca,
J. E. Protein Eng. 1995, 8, 677-691.
(16) Ortiz, A. R.; Pisabarro, M. T.; Gago, F.; Wade, R. C. J. Med. Chem.
1995, 38, 2681-2691.
(17) Hodge, C. N.; Straatsma, T. P.; McCammon, J. A.; Wlodawer, A.
Rational Design of HIV Protease Inhibitors. In Structural Biology of Viruses;
Chiu, W., Burnett, R. M., Garcea, R., Eds.; Oxford University Press: New
York, 1997; pp 451-473.
4
4. (e) Ottto, M. J.; Reid, C. D.; Garber, S.; Lam, P. Y. S.; Scarnati, H.;
Bacheler, L. T.; Rayner, M. M.; Winslow, D. L. Antimicrob. Agents
Chemother. 1993, 37, 2606-2611.
(
7) For reviews see: Lin, J. H. AdV. Drug DeliVery ReV. 1997, 27(2, 3),
7
2
74-778. Vacca, J. P.; Condra, J. H. Drug DiscoVery Today 1997, 2(7),
61-272.
(8) (a) Otto, M. J.; Garber, S.; Winslow, D. L.; Reid, C. D.; Aldrich, P.;
Jadhav, P. K.; Patterson, C. E.; Hodge, C. N.; Cheng, Y. S. E. Proc. Natl.
Acad. Sci. U.S.A. 1993, 90, 7543-7547. (b) Reference 6a. (c) Winslow, D.
L.; Anton, E. D.; Horlick, R. A.; Zagursky, R. J.; Tritch, R. J.; Scarnati,
H.; Ackerman, K.; Bacheler, L. T. Biochem. Biophys. Res. Commun. 1994,
2
05, 1651-1657. (d) Winslow, D. L.; Stack, S.; King, R.; Scarnati, H.;
Bincsik, A.; Otto, M. J. AIDS Res. Hum. RetroViruses 1995, 11, 107-113.
e) King, R. W.; Garber, S.; Winslow, D. L.; Reid, C.; Bachelor, L. T.;
Anton, E.; Otto, M. J. AntiViral Chem. Chemother. 1995, 6, 80-88.
9) (a) Ala, P.; Huston, E.; Klabe, R.; McCabe, D.; Duke, J.; Rizzo, C.;
(
(
Korant, B.; DeLoskey, R.; Lam, P. Y. S.; Hodge, C. N.; Chang, C.-H.
Biochemistry 1997, 36, 6(7), 1573-1580. (b) Jadhav, P. K.; Ala, P.;
Woerner, F. J.; Chang, C.-H.; Garber, S. S.; Anton, E. D.; Bacheler, L. T.
J. Med. Chem. 1997, 40, 181-191.
(
10) (a) Lybrand, T. P.; Kollman, P. A. J. Chem. Phys. 1985, 83, 2923-
2
933. (b) Kuntz, I. D. Science 1992, 257(5073), 1078-1982. (c) Crippen,
G. M. J. Comput. Chem. 1995, 16, 486-500. (d) Ajay, Murcko, M. J. Med.
Chem. 1995, 38, 4953-4967.
(
11) (a) Cho, S. J.; Tropsha, A. J. Med. Chem. 1995, 38, 1060-6. (b)
Klebe, G.; Abraham, U. J. Med. Chem. 1993, 36, 70-80. (c) Yamada, M.;
Itai, A. Chem. Pharm. Bull. 1993, 41, 1203-1205. (d) Cruciani, G.; Watson,
K. A. J. Med. Chem. 1994, 37, 2589-2601.