1718
A. Ogata et al.
LETTER
SPh
TiCp2
SPh
(4) Martin, H. C.; James, N. H.; Aitken, J.; Gaunt, J. A.; Adams,
H.; Haynes, A. Organometallics 2003, 22, 4451.
1 (2 equiv)
H2O
(5) (a) Dötz, K. H.; Tomuschat, P.; Nieger, M. Chem. Ber./Recl.
1997, 130, 1605. (b) Tomuschat, P.; Kröner, L.; Steckhan,
E.; Nieger, M.; Dötz, K. H. Chem. Eur. J. 1999, 5, 700.
(c) Fernández, I.; Sierra, M. A.; Mancheño, M. J.; Gómez-
Gallego, M.; Ricart, S. Organometallics 2001, 20, 4304.
(6) For examples, see: (a) Meier, H. Angew. Chem., Int. Ed.
Engl. 1992, 31, 1399. (b) Adam, D.; Closs, F.; Frey, T.;
Funhoff, D.; Haarer, D.; Ringsdorf, H.; Schuhmacher, P.;
Siemensmeyer, K. Phys. Rev. Lett. 1993, 70, 457.
5
3a
– Cp2Ti(SPh)2
6
Scheme 2 Formation of titanacycle 6 from bisthioacetal 3a
Table 3 Efficiency Comparison between the Present and Reported
Reactions
(c) Adam, D.; Schuhmacher, P.; Simmerer, J.; Häussling, L.;
Siemensmeyer, K.; Etzbach, K. H.; Ringsdorf, H.; Haarer,
D. Nature (London) 1994, 371, 141. (d) Tanaka, H.; Tokito,
S.; Taga, Y.; Okada, A. Chem. Commun. 1996, 2175.
(e) Jiang, D.-L.; Aida, T. Nature (London) 1997, 388, 454.
(f) Kraft, A.; Grimsdale, A. C.; Holmes, A. B. Angew. Chem.
Int. Ed. 1998, 37, 402. (g) Martin, R. E.; Diederich, F.
Angew. Chem. Int. Ed. 1999, 38, 1350. (h) Friend, R. H.;
Gymer, R. W.; Holmes, A. B.; Burroughes, J. H.; Marks, R.
N.; Taliani, C.; Bradley, D. D. C.; Dos Santos, D. A.; Brédas,
J. L.; Lögdlund, M.; Salaneck, W. R. Nature (London) 1999,
397, 121. (i) Balzani, V.; Ceroni, P.; Gestermann, S.;
Kauffmann, C.; Gorka, M.; Vögtle, F. Chem. Commun.
2000, 853. (j) Segura, J. L.; Martín, N. J. Mater. Chem.
2000, 10, 2403. (k) Fechtenkötter, A.; Tchebotareva, N.;
Watson, M.; Müllen, K. Tetrahedron 2001, 57, 3769.
(l) Kwok, C. C.; Wong, M. S. Macromolecules 2001, 34,
6821. (m) Li, C. L.; Shien, S. J.; Lin, S. C.; Liu, R. S. Org.
Lett. 2003, 5, 1131. (n) Takahashi, M.; Odagi, T.; Tomita,
H.; Oshikawa, T.; Yamashita, M. Tetrahedron Lett. 2003,
44, 2455. (o) Kan, Y.; Wang, L.; Duan, L.; Hu, Y.; Wu, G.;
Qiu, Y. Appl. Phys. Lett. 2004, 84, 1513. (p) Wex, B.;
Kaafarani, B. R.; Schroeder, R.; Majewski, L. A.; Burckel,
P.; Grell, M.; Neckers, D. C. J. Mater. Chem. 2006, 16,
1121. (q) Padmaperuma, A. B.; Sapochak, L. S.; Burrows, P.
E. Chem. Mater. 2006, 18, 2389. (r) Saito, G.; Yoshida, Y.
Bull. Chem. Soc. Jpn. 2007, 80, 1.
Entry
Product Yield (%)
Present reaction Horner–Wadsworth–
Emmons reaction using 9
1
2
8b
8l
66a
42,b 61c
37,11a 2711b
1711c
a Carried out using 1 (6 equiv) and 7a (2 equiv) at 25 °C for 1 h.
b Carried out using 1 (6 equiv), 3c (1.1 equiv), and 7c (2 equiv) under
reflux for 3 h. The yield is based on the amount of 7c used.
c Carried out using 1 (8 equiv) and 7 (4 equiv) under reflux for 3 h.
O
O
P(OEt)2
(EtO)2P
9
In conclusion, we have established the facile method for
the preparation of titanium multicarbene complexes uti-
lizing multithioacetals as starting materials. The mandato-
ry requirement for the preparation of such unprecedented
organotitanium species is that the thioacetal functional-
ities in a molecule must be arranged so as to be separated
from each other, otherwise the titanacycle is formed. A
variety of extended p-conjugation systems were con-
structed in one pot by the use of these multicarbene com-
plexes.
(7) (a) Fischer, E. O.; Dötz, K. H. J. Organomet. Chem. 1972,
36, C4. (b) Connor, J. A.; Rose, P. D.; Turner, R. M. J.
Organomet. Chem. 1973, 55, 111. (c) Connor, J. A.; Day, J.
P.; Turner, R. M. J. Chem. Soc., Dalton Trans. 1976, 108.
(d) Nakamura, E.; Tanaka, K.; Aoki, S. J. Am. Chem. Soc.
1992, 114, 9715. (e) Mak, C. C.; Chan, K. S. J. Chem. Soc.,
Perkin Trans. 1 1993, 2143. (f) Mak, C. C.; Tse, M. K.;
Chan, K. S. J. Org. Chem. 1994, 59, 3585. (g) Scharrer, E.;
Brookhart, M. J. Organomet. Chem. 1995, 497, 61.
(h) Merlic, C. A.; Albaneze, J. Tetrahedron Lett. 1995, 36,
1007. (i) Parisi, M.; Solo, A.; Wulff, W. D.; Guzei, I. A.;
Rheingold, A. L. Organometallics 1998, 17, 3696.
(j) Takeda, T.; Nozaki, N.; Fujiwara, T. Tetrahedron Lett.
1998, 39, 3533. (k) Iwasawa, N.; Saitou, M.; Kusama, H. J.
Organomet. Chem. 2001, 617, 741. (l) Buck, R. T.; Coe, D.
M.; Drysdale, M. J.; Ferris, L.; Haigh, D.; Moody, C. J.;
Pearson, N. D.; Sanghera, J. B. Tetrahedron: Asymmetry
2003, 14, 791.
Acknowledgment
This work was supported by Grant-in-Aid for Scientific Research
(No. 18350018) and Grant-in-Aid for Scientific Research on Priori-
ty Areas ‘Advanced Molecular Transformations of Carbon Re-
sources’ (No. 18037017) from the Ministry of Education, Culture,
Sports, Science and Technology, Japan. This research was carried
out under the 21st Century COE program of ‘Future Nanomaterials’
at Tokyo University of Agriculture and Technology.
References and Notes
(8) (a) The titanacycle 6 was isolated by column
chromatography over alumina gel (hexane–EtOAc, 98:2)
under N2, mp 85–87 °C. 1H NMR (300 MHz, CDCl3): d =
4.88 (s, 2 H), 5.88 (s, 5 H), 6.44 (s, 5 H), 7.03–7.28 (m, 14
H). 13C NMR (75 MHz, CDCl3): d = 58.7, 114.6, 115.8,
123.0, 124.1, 125.0, 125.6, 128.7, 142.4, 146.1. IR (KBr):
n = 3057, 2914, 1579, 1476, 1439, 1085, 1022, 824, 739, 690
cm–1.
(1) (a) Takeda, T. Bull. Chem. Soc. Jpn. 2005, 78, 195.
(b) Takeda, T. Chem. Rec. 2007, 7, 24.
(2) Takeda, T.; Tsubouchi, A. In Modern Carbonyl Olefination;
Takeda, T., Ed.; Wiley-VCH: Weinheim, 2004, 151.
(3) (a) Anderson, D. M.; Bristow, G. S.; Hitchcock, P. B.; Jasim,
H. A.; Lappert, M. F.; Skelton, B. W. J. Chem. Soc., Dalton
Trans. 1987, 2843. (b) Fuchibe, K.; Iwasawa, N. Chem. Eur.
J. 2003, 9, 905. (c) Lalov, A. V.; Egorov, M. P.; Nefedov, O.
M.; Cherkasov, V. K.; Ermolaev, N. L.; Piskunov, A. V.
Russ. Chem. Bull. 2005, 54, 807.
Lappert and co-workers reported the preparation of 2-
titanaindane8b and meso-1,3-bis(trimethylsilyl)-2-
titanaindane8c complexes. The NMR signals of the Cp rings
Synlett 2007, No. 11, 1715–1719 © Thieme Stuttgart · New York