M. Meneghetti, A. Bianco and S. Yitzchaik, J. Mater. Chem., 2010,
20, 2408; (c) Z. Liu, K. Yang and S.-T. Lee, J. Mater. Chem., 2011,
21, 586.
suppresses the hydrogenation of the C]C bond. Moreover, by
comparison to the commercial 5 wt% Ru/C catalyst, the 1.5 wt%
Ru/f-CNTs still show a higher selectivity to G&N with a high TOF
5 (a) J. Liu, A. G. Rinzler, H. Dai, J. H. Hafner, R. K. Bradley,
P. J. Boul, A. Lu, T. Iverson, K. Shelimov, C. B. Huffman,
F. Rodriguez-Macias, Y. S. Shon, T. R. Lee, D. T. Colbert and
R. E. Smalley, Science, 1998, 280, 1253; (b) P. Singh,
S. Campidelli, S. Giordani, D. Bonifazi, A. Bianco and M. Prato,
Chem. Soc. Rev., 2009, 38, 2214; (c) B. K. Gorityala, J. Ma,
X. Wang, P. Chen and X.-W. Liu, Chem. Soc. Rev., 2010, 39,
2925; (d) J. Ming, Y. Wu, Y. Yu and F. Zhao, Chem. Commun.,
2011, 47, 5223.
6 (a) Y. Kang and T. A. Taton, J. Am. Chem. Soc., 2003, 125, 5650; (b)
W. Yi, A. Malkovskiy, Q. Chu, A. P. Sokolov, M. L. Colon,
M. Meador and Y. Pang, J. Phys. Chem. B, 2008, 112, 12263; (c)
T. Casagrande, P. Imin, F. Cheng, G. A. Botton, I. Zhitomirsky
and A. Adronov, Chem. Mater., 2010, 22, 2741.
of 400 hꢂ1, which is about 4 times higher than that (TOF, 83 hꢂ1
)
obtained on the 5 wt% Ru/C catalyst under the same reaction
conditions. Obviously, using the support of CNTs or f-CNTs
could largely enhance the activity and selectivity of the hydroge-
nation of citral, but even they themselves did not show any cata-
lytic activity in the reaction. It is noteworthy that the catalyst of
1.5 wt% Ru/f-CNTs showed a good activity and relative stability
in the recycling test (see the Supporting Information, Table S1†).
Therefore, the f-CNTs with such an oxygenated coat were an
effective support for the metal catalyst and presented outstanding
catalytic activity and selectivity in a typical selective hydrogena-
tion of unsaturated aldehydes.
7 (a) A. Star, D. W. Steuerman, J. R. Health and J. F. Stoddart, Angew.
Chem., Int. Ed., 2002, 41, 2508; (b) X. Chen, G. S. Lee, A. Zettl and
C. R. Bertozzi, Angew. Chem. Int. Ed., 2004, 43, 6112; (c)
€
Y. L. Zhao, L. Hu, J. F. Stoddart and G. Gruner, Adv. Mater.,
2008, 20, 1910.
8 (a) H. Kong, C. Gao and D. Yan, J. Am. Chem. Soc., 2004, 126, 412;
Conclusions
In summary, a network-coat of carbonaceous materials with
a high density of oxygenated groups was successfully knitted on
CNTs layer-by-layer from the hydrothermal treatment of
biomass, which was absolutely different to the linear polymers
polymerized from the monomers. The thickness, compositions,
and surface properties of the conformal coat could be easily
controlled via varying the reaction conditions. The functional-
ized CNTs could still keep the micro-/macro-structure of the
pristine CNTs and were proved to be a promising catalyst
support for the hydrogenation of citral to unsaturated alcohol.
With this strategy, carbon materials like fullerene, graphene and
the carbon horns could also be homogeneously endowed with the
requisite effective functional groups both more easily and
precisely whilst still preserving their intact micro-/macro-struc-
tures, and thus constructing new carbon-based materials and
exploring their applications.
ꢁ
(b) T. Sainsbury, K. Erickson, D. Okawa, S. Zonte, J. M. J. Frechet
and A. Zettl, Chem. Mater., 2010, 22, 2164.
9 (a) M. Naito, K. Nobusawa, H. Onouchi, M. Nakamura, K. Yasui,
A. Ikeda and M. Fujiki, J. Am. Chem. Soc., 2008, 130, 16697; (b)
P. Wu, X. Chen, N. Hu, U. C. Tam, O. Blixt, A. Zettl and
C. R. Bertozzi, Angew. Chem., Int. Ed., 2008, 47, 5022; (c) J.-I. Lee,
S.-B. Yang and H.-T. Jung, Macromolecules, 2009, 42, 8328.
10 F. Rivadulla, C. Mateo-Mateo and M. A. Correa-Duarte, J. Am.
Chem. Soc., 2010, 132, 3751.
11 (a) R. H. Holgate, J. C. Meyer and J. W. Tester, AIChE J., 1995, 41,
637; (b) B. M. Kabyemela, T. Adschiri, R. M. Malaluan and K. Arai,
€
Ind. Eng. Chem. Res., 1999, 38, 2888; (c) S. Karagoz, T. Bhaskar,
A. Muto and Y. Sakata, Fuel, 2005, 84, 875; (d) M. Sevilla and
A. B. Fuertes, Chem.–Eur. J., 2009, 15, 4195; (e) M. Sevilla and
A. B. Fuertes, Carbon, 2009, 47, 2281; (f) M. Sevilla and
A. B. Fuertes, Chem. Phys. Lett., 2010, 490, 63.
12 (a) X. Sun and Y. Li, Angew. Chem., Int. Ed., 2004, 43, 3827; (b)
B. Hu, S. H. Yu, K. Wang, L. Liu and X. W. Xu, Dalton Trans.,
2008, 5414; (c) B. Hu, K. Wang, L. Wu, S. H. Yu, M. Antonietti
and M. M. Titirici, Adv. Mater., 2010, 22, 813; (d) M. R. Gao,
W. H. Xu, L. B. Luo, Y. J. Zhan and S. H. Yu, Adv. Mater., 2010,
22, 1977.
13 (a) S. Srinivasan, V. K. Praveen, R. Philip and A. Ajayaghosh, Angew.
Chem. Int. Ed., 2008, 47, 5750; (b) A. Ghosh, K. V. Rao, R. Voggu
and S. J. Georage, Chem. Phys. Lett., 2010, 488, 198.
€
14 M. M. Titirici, A. Thomas, S. H. Yu, J. O. Muller and M. Antonietti,
Chem. Mater., 2007, 19, 4205.
Acknowledgements
This work was financial supported by the One Hundred Talent
Program of CAS, NSFC 20873139, and KJCX2, YWH16.
15 A. C. Lua and T. Yang, J. Colloid Interface Sci., 2004, 274(2), 594.
16 (a) L. Fu, Y. Liu, Z. Liu, B. Han, L. Cao, D. Wei, G. Yu and D. Zhu,
Adv. Mater., 2006, 18, 181; (b) Y. L. Zhao and J. F. Stoddart, Acc.
Chem. Res., 2009, 42, 1161; (c) N. Karousis and N. Tagmatarchis,
Chem. Rev., 2010, 110, 5366.
Notes and references
1 (a) J. E. Riggs, Z. Guo, D. L. Carrol and Y. P. Sun, J. Am. Chem.
Soc., 2000, 122, 5879; (b) D. Tasis, N. Tagmatarchis, A. Bianco and
M. Prato, Chem. Rev., 2006, 106, 1105; (c) Z. Liu and B. Han, Adv.
Mater., 2009, 21, 825; (d) D. Eder, Chem. Rev., 2010, 110, 1348; (e)
Y. Chen, V. S. Muthukumar, Y. Wang, C. Li, S. S. Krishnan,
S. S. S. Sai, K. Venkatataramaniah and S. Mitra, J. Mater. Chem.,
2009, 19, 6568.
2 (a) P. M. Ajayan, O. Stephan, P. Redlich and C. Colliex, Nature, 1995,
375, 564; (b) C. N. R. Rao, B. C. Satishkumar and A. Govindaraj,
Chem. Commun., 1997, (16), 1581; (c) Z. Sun, H. Yuan, Z. Liu,
B. Han and X. Zhang, Adv. Mater., 2005, 17, 2993.
3 (a) B. Wu, D. Hu, Y. Yu, Y. Kuang, X. Zhang and J. Chen, Chem.
Commun., 2010, 46, 7954; (b) Z. Jiang, X. Yu, Z. Jiang, Y. Meng
and Y. Shi, J. Mater. Chem., 2009, 19, 6720; (c) S. Zhang, Y. Shao,
G. Yin and Y. Lin, J. Mater. Chem., 2010, 20, 2826.
4 (a) M. Prato, K. Kostarelos and A. Blanco, Acc. Chem. Res., 2008, 41,
ꢁ
60; (b) S. Ben-Valid, H. Dumortier, M. Decossas, R. Sfez,
ꢁ
17 (a) B. C. Thompson and J. M. J. Frechet, Angew. Chem., Int. Ed.,
2008, 47, 58; (b) A. K. Geim, Science, 2009, 324, 1530; (c) M. Fang,
K. Wang, H. Lu, Y. Yang and S. Nutt, J. Mater. Chem., 2010, 20,
1982.
18 K. Bauer and D. Garbe, Common Fragrance and Flavour Materials,
VCH, New York, 1985.
19 R. Liu, Y. Yu, K. Yoshida, G. Li, H. Jiang, M. Zhang, F. Zhao and
M. Arai, J. Catal., 2010, 269, 191.
20 R. Liu, H. Cheng, Q. Wang, C. Wu, J. Ming, C. Xi, Y. Yu, S. Cai,
F. Zhao and M. Arai, Green Chem., 2008, 10, 1082.
21 (a) M. L. Toebes, Y. Zhang, J. Hajek, T. A. Nijhuis, J. H. Bitter,
A. J. Dillen, D. Y. Murzin, D. C. Koningsberger and
K. P. DeJong, J. Catal., 2004, 226, 215; (b) P. Makowski,
R. D. Cakan, M. Antonietti, F. Goettmann and M.-M. Titirici,
Chem. Commun., 2008, 999.
10934 | J. Mater. Chem., 2011, 21, 10929–10934
This journal is ª The Royal Society of Chemistry 2011