Synthesis, Characterization, and Structure Solution of CIT-5
J. Phys. Chem. B, Vol. 102, No. 37, 1998 7147
TABLE 9: Hydrocracking of n-Hexadecane. Comparison of
Dimethylbutanes to n-Hexane Product Ratios with Pore
Diameters
for their assistance in collecting the synchrotron powder XRD
data. The data were collected at the X7A beamline at the
National Synchrotron Light Source at Brookhaven National
Laboratory (Upton, NY), which is supported by the Department
of Energy, Division of Material Science and Division of
Chemical Sciences. Dr. Chuck Kibby of Chevron is thanked
for the collection of argon isotherms, Dr. Ronald C. Medrud of
Chevron is thanked for synchrotron powder XRD data collec-
tion, and Drs. Tom Harris and Bowman Lee also of Chevron
are thanked for the experimental hydrocracking and cracking
data. M.T. and M.L. acknowledge support from the David and
Lucile Packard Foundation. P.W. thanks Air Products and
Chemicals for financial support. Additional financial support
for this work was provided by Chevron.
molecular
sieve
diameter
(Å)
dimethylbutane/
dimensionality
n-hexane
ZSM-12
SSZ-31
SSZ-24
CIT-5
UTD-1
LTL
1
1
1
1
1
1
3
6.0
0.08
0.50
0.80
0.33
0.20
0.20
0.15
8.8 × 5.5
7.3
b
7.3
10.0 × 7.7
a
10
a
FAU
13
a
Multidimensional channel system. b Small side pockets within pores
give maximum free pore diameter of 10.7 Å.
zeolites, and then for larger pores the effect of the inverse shape-
selectivity is lost and the values drop again for this ratio. This
ratio for several zeolites and CIT-5 is presented in Table 9 along
References and Notes
(
(
1) Davis, M. E. Chem. Eur. J. 1997, 3, 1745-1750.
2) Davis, M. E. Chem. Ind. (London) 1992, 4, 137.
with the nominal pore-size data. A particularly interesting case
(3) Estermann, M.; McCusker, L. B.; Baerlocher, Ch.; Merrouche, A.;
is SSZ-3134 which has an elliptical, one-dimensional pore that
Kessler, H. Nature 1991, 352, 320-323.
(
(
(
4) Davis, M. E. Nature 1991, 352, 281.
5) Davis, M. E. Nature 1989, 337, 117.
6) Barrer, R. M.; Villiger, H. Z. Kristallografiga 1963, 128, 352.
reaches 8.8 Å in diameter across the major axis of the ellipse
but is limited to 5.5 Å in diameter across the minor axis. In
this case, the smaller cross section determines the product
distribution. SAPO-11, another molecular sieve with elliptical
pores and a diameter across the major axis greater than 6 Å,
also shows this restrictive behavior. Although the pore aperature
is 7.3 Å, CIT-5 does not give a ratio near the maximum of the
bell-shaped curve, as SSZ-24 does. Instead, the hydrocracking
over CIT-5 yields a lower ratio, which can be attributed to small
side pockets that give a maximum free pore diameter of 10.7
Å. The reaction data when taken in total show that CIT-5
provides for unique reaction behavior when compared to other
zeolites. This is not unexpected from the fact that it contains
a unique pore system.
(7) Smith, J. V.; Dytrych, W. J. Nature 1984, 309, 607.
(
(
8) Brunner, G. O.; Meier, W. M. Nature 1989, 337, 147.
9) Davis, M. E.; Saldarriaga, C.; Montes, C.; Garces, J.; Crowder,
C. Nature 1988, 331, 698.
(10) Jones, R. H.; Thomas, J. M.; Chen, J. S.; Xu, R. R.; Hou, Q. S.;
Li, S. G.; Ma, Z. J. Solid State Chem. 1993, 102, 202-208.
(
(
11) Loiseau, T.; Ferrey, G. J. Solid State Chem. 1994, 111, 403-415.
12) Loiseau, T.; Ferrey, G. J. Mater. Chem. 1996, 6, 1073-1074.
(13) Kahn, M. I.; Meyer, L. M.; Haushalter, R. C. Chem. Mater. 1996,
8, 43-53.
(
14) Schindler, M.; Joswig, W.; Bauer, W. H. Z. Anorg. Allg. Chem.
1
997, 623, 45-54.
(15) Freyhardt, C. C.; Tsapatsis, M.; Lobo, R. F.; Balkus, K. J.; Davis,
M. E. Nature 1996, 381, 295.
16) Lobo, R. F.; Tsapatsis, M.; Freyhardt, C. C.; Khodabandeh, S.;
(
Wagner, P.; Chen, C. Y.; Balkus K. J.; Zones, S.; Davis, M. E. J. Am.
Chem. Soc. 1997, 119, 8474-8484.
Conclusions
(17) Wagner, P.; Yoshikawa, M.; Lovallo, M.; Tsuji, K.; Tsapatsis, M.;
The structure of CIT-5, a new high-silica molecular sieve,
has been determined, and the material is shown to contain extra-
large pores circumscribed by 14 T-atoms. Rietveld refinement
of the synchrotron X-ray powder data gives the symmetry and
space group assignment for the structure of Pmn21 (no. 31) with
Davis, M. E. Chem. Commun. 1997, 2179-2180.
18) Lobo, R. F.; Davis, M. E. Microporous Mater. 1994, 3, 61.
(19) Zones, S. I.; Nakagawa, Y. U.S. Patent 5,225,179; 1993.
20) Bialek, R.; Meier, W. M.; Davis. M. E.; Annen, M. J. Zeolites 1991,
1, 438-442.
21) Richardson, J. W.; Smith, J. V.; Han, S. X. J. Chem. Soc., Faraday
(
(
1
(
refined unit cell parameters of a ) 13.6738(8) Å, b ) 5.0216-
Trans. 1990, 86, 2341.
(22) Meier, W. M.; Olson, D. H.; Baerlocher, Ch. Atlas of Zeolite
Structure Types, 4th ed.; Elsevier: London, 1996.
3
(
3) Å, and c ) 25.4883(7) Å (V ) 1750.1 Å ). All Si-O-Si
and O-Si-O bond angles and Si-O bond distances calculated
from the final atomic coordinates are within reasonable ranges
for silicate materials. TEM/ED indicates that the one-
dimensional pore material does not contain faulting defects and
that the pores run along the long axis of the crystals. Both the
adsorption (1,3,5-triisopropylbenzene uptake) and the catalytic
results (p/o ratio from m-xylene isomerization and the dimeth-
ylbutane/n-hexane product ratio from the hydrocracking of
n-hexadecane) support the structure assignment. CIT-5 is
synthesized hydrothermally in the presence of the organic,
N(16)-methylsparteinium, and lithium cations. 13C MAS NMR
indicates the organic is intact in the pores of the as-synthesized
material and has not degraded under synthesis conditions.
Stability studies reveal that CIT-5 retains its pore structure under
both high thermal and hydrothermal conditions. CIT-5 together
with UTD-1 are the only extra-large-pore, high-silica molecular
sieves that have high thermal/hydrothermal stability.
(
23) Werner, P. E.; Erikson, L.; Westdahl, M. J. Appl. Crystallogr. 1985,
18, 367.
(24) Larson A. C.; Von Dreele, R. B. Los Alamos Laboratory Report,
987, No. LA-UR-86-748.
25) Baerlocher, Ch.; Hepp, A.; Meier, W. M. DLS-76: A Fortran
1
(
Program for the Simulation of Crystal Structures by Geometric Refinement,
Institute fur Kristallographie, ETH: Zurich, Switzerland, 1977.
(
26) CERIUS Molecular Simulations, version 3.2; Cambridge, U.K.,
993.
27) Thompson, P.; Cox, D. E.; Hastings. J. B. J. Appl. Crystallogr.
1987, 15, 615-620.
28) Lewis, J.; Freyhardt, C. F.; Davis, M. E. J. Phys. Chem. 1996, 100,
1
(
(
5045-5049.
(
29) Englehardt, G.; Michel, D. High-resolution solid-state NMR of
silicates and zeolites; Wiley: New York, 1987.
(30) van Bekkum, H.; Flanigen, E. M.; Jansen, J. C. Introduction to
Zeolite Science and Practice; Elsevier: Amsterdam, 1991.
(31) Yuen, L. T.; Geilfuss, J.; Zones, S. I. Microporous Mater. 1997,
1
2, 229.
(32) Martens, J. A.; Perez-Pariente, J.; Sastre, E.; Corma, A.; Jacobs,
P. A. Appl. Catal. A 1988, 45, 85-101.
33) Santilli, D. S.; Harris, T. V.; Zones, S. I. Microporous Mater. 1993,
, 329-341.
34) Lobo, R. F.; Tsapatsis, M.; Freyhardt, C. F.; Chan, I. Y.; Chen, C.
Y.; Zones, S. I.; Davis, M. E. J. Am. Chem. Soc. 1997, 119, 3732-3744.
(
1
Acknowledgment. We gratefully acknowledge Dr. John
Higgins of Air Products and Chemicals Inc. and Dr. D. E. Cox
(