10.1002/cssc.201901820
ChemSusChem
COMMUNICATION
examined by GC-MS (Figure S10). Trace amounts of CH3Cl and
CH3CH2Cl were detected, which are possible intermediates to
[3] a) J. Wei, Q. Ge, R. Yao, Z. Wen, C. Fang, L. Guo, H. Xu, J. Xu,
Nat Commun. 2017, 8, 15174; b) R. W. Dorner, D. R. Hardy, F.
W. Williams, H. D. Willauer, Energy Environ. Sci. 2010, 3, 884-
890.
form CH4, ethane, propane and n-butane.[6c] Based on the
experimental results and previous reports,[6c],
a possible
[15]
reaction pathway is proposed as shown in Scheme 2. Firstly, CO
is generated via Pd* catalyzed CO2 hydrogenation (Step 1), [16]
which is then coordinated with Pd* to form the Pd*CO complex
(Step 2). The HPd*CHO complex may be formed via the
hydrogenation of Pd*CO complex (Step 3), which further reacts
with H2 and Cl- to convert into CH3Pd*Cl promoted by Fe* (Step
4). Subsequently, CO inserts into the CH3-Pd* bond, which
easily occurs,[17] generating CH3COPd*Cl (Step 5). Followed by
hydrogenation, CH3CH3 is formed (Step 6). The generation of
propane and n-butane from CH3CH2Cl maybe follow the similar
steps. In this work, the Fe catalyst mainly promotes the
formation of CH3Cl and CH3CH2Cl intermediates,[6c] while the Pd
catalyst is responsible for hydrogenation (Table 1, entry 8).
[BMIm][PF6] and ligand (Xantphos) play vital roles in modifying
the electronic states of Pd and Fe catalysts and stabilizing the
metal-based active species (Table 1, entries 1 and 3).
In summary, [BMIm][PF6] could promote the selective
hydrogenation of CO2 over the Pd-Fe homogeneous catalysts,
yielding C2-C4 hydrocarbons including ethane, propane and n-
butane in selectivity up to 98.3 C-mol% and yield as high as 1.08
C-mmol at 180 C. The catalytic system could be recycled and
reused for at least 5 times without activity loss. The IL and
Xantphos ligand complexed with Pd and Fe to form active
species, which could activate CO2 and H2 simultaneously,
further catalyzing the CO2 hydrogenation to C2-C4 hydrocarbons.
We believe that this kind of catalytic system may find promising
applications in the transformation of CO2 to C2+ alcohols/hydroc-
arbons under mild conditions. Further work is under way in our
group.
[4] a) M. K. Gnanamani, G. Jacobs, H. H. Hamdeh, W. D.; Liu, F.
Shafer, S. D. Hopps, G. A. Thomas, B. H. Davis, ACS Catal.
2016, 6, 913-927; b)M.-W. L. G. Kishan, S.-S. Nam, M.-J. Choi
and K.-W. Lee, Catal. Lett. 1998, 56, 215-219; c) M. Niemelä, M.
Nokkosmäki, Catal. Today. 2005, 100, 269-274; d) R.
Satthawong, N. Koizumi, C. Song, P. Prasassarakich, Catal.
Today. 2015, 251, 34-40; e) W. Chen, T. Lin, Y. Dai, Y. An, F. Yu,
L. Zhong, S. Li, Y. Sun, Catal. Today. 2018, 311, 8-22; f) R. W.
Dorner, D. R. Hardy, F. W. Williams, H. D. Willauer, Appl. Catal.
A: Gen. 2010, 373, 112-121; g) P. S. Sai Prasad, J. W. Bae, K.-
W. Jun, K.-W. Lee, Catal Surv Asia. 2008, 12, 170-183.
[5] M. I. Qadir, A. Weilhard, J. A. Fernandes, I. B. J. C. Vieira, J. C.
Waerenborgh, J. Dupont, ACS Catal. 2018, 8, 1621-1627.
[6] a) S. Takemoto, H. Morita, K. Karitani, H. Fujiwara, H. Matsuzaka,
J. Am. Chem. Soc. 2009, 131, 18026-18027; b) G. v. Demitras, E.
L. Muetterties, J. Am. Chem. Soc. 1977, 99, 2796-2797; c)
James P. Coliman, John I. Brauman, a. G. S. W. I. Gerald Tustin,
J. Am. Chem. Soc. 1983, 105, 3913-3922.
[7] a) Y. Zhao, B. Yu, Z. Yang, H. Zhang, L. Hao, X. Gao, Z. Liu,
Angew. Chem. Int. Ed. 2014, 53, 5922-5925; b) Y. Wu, Y. Zhao,
R. Li, B. Yu, Y. Chen, X. Liu, C. Wu, X. Luo, Z. Liu, ACS Catal.
2017, 7, 6251-6255; c) H. Wang, Y. Zhao, Z. Ke, B. Yu, R. Li, Y.
Wu, Z. Wang, J. Han, Z. Liu, Chem Commun. 2019, 55, 3069-
3072.
[8] a) A. Weilhard, M. I. Qadir, V. Sans, J. Dupont, ACS Catal. 2018,
8, 1628-1634; b) M. Ali, A. Gual, G. Ebeling, J. Dupont,
ChemSusChem. 2016, 9, 2129-2134; c) C. I. Melo, A.
Szczepanska, E. Bogel-Lukasik, M. Nunes da Ponte, L. C.
Branco, ChemSusChem. 2016, 9, 1081-1804; d) M. Cui, Q. Qian,
Z. He, Z. Zhang, J. Ma, T. Wu, G. Yang, B. Han, Chem Sci. 2016,
7, 5200-5205.
[9] Q. Qian, J. Zhang, M. Cui, B. Han, Nat Commun. 2016, 7, 11481.
[10] S. Cao, H. Li, T. Tong, H.-C. Chen, A. Yu, J. Yu, H. M. Chen,
Adv. Mater. 2018, 28, 1802169.
Acknowledgements
The work was supported by National Key Research and
Development Program of China (2018YFB0605801),National
Natural Science Foundation of China (21890761, 21533011,
21773266), Chinese Academy of Sciences (QYZDY-SSW-
SLH013-2), and Beijing Municipal Science
Commission (Z181100004218004).
[11] a) E. S. Chernyshova, R. Goddard, K.-R. Po¨rschke,
Organometallics. 2007, 26, 3236-3251; b) A. P. Umpierre, G.
Machado, G. H. Fecher, J. Morais, J. Dupont, Adv. Synth. Catal.
2005, 347, 1404-1412.
& Technology
[12] E. C. Wasinger, F. M. F. de Groot, B. Hedman, K. O. Hodgson,
E. I. Solomon J. Am. Chem. Soc. 2003, 125, 12894-12906.
[13] T. Yamashita, P. Hayes, Appl. Surf. Sci. 2008, 254, 2441-2449.
[14] Z. Ke, B. Yu, H. Wang, J. Xiang, J. Han, Y. Wu, Z. Liu, P. Yang,
Z. Liu, Green Chem. 2019, 21, 589-596.
Keywords: ionic liquid • CO2 hydrogenation • Pd–Fe homogeneous
catalysis • C2-C4 hydrocarbons synthesis
[15] G. Prieto, ChemSusChem. 2017, 10, 1056-1070.
[16] X. Wang, H. Shi, J. H. Kwak, J. Szanyi, ACS Catal. 2015, 5,
6337-6349.
[1] M. Roiaz, E. Monachino, C. Dri, M. Greiner, A. Knop-Gericke, R.
Schlogl, G. Comelli, E. Vesselli, J. Am. Chem. Soc. 2016, 138,
4146-4154.
[17] a) G. Braca, G. Sbrana, G. Valentini, G. Andrich and G.
Gregorio, J. Am. Chem. Soc. 1978, 100, 6238–6240; b) Q. Qian,
M. Cui, J. Zhang, J. Xiang, J. Song, G. Yang, B. Han, Green
Chem. 2018, 20, 206-21.
[2] C. Xie, C. Chen, Y. Yu, J. Su, Y. Li, G. A. Somorjai, P. Yang,
Nano Lett. 2017, 17, 3798-3802.
This article is protected by copyright. All rights reserved.