Organic & Biomolecular Chemistry
Page 6 of 7
→
0:1) to afford the product 9 (51 mg, 89%) as a purple solid.
Mp 180–182 °C. R = 0.41 (hexanes/CH Cl
) λmax (ε) 419 (546000), 516 (21100), 552 (10000), 591
6070), 646 (5440) nm; IR (ATR) 3314 (w), 2923 (m), 2855 (w),
J = 5.0 Hz, 2H), 8.68 (d, J = 5.0 Hz, 2H), 8.51 (d, J = 4.9 Hz,
f
2
2
1:1). UV-vis 60 2H), 7.96–7.82 (m, 7H), 7.69–7.63 (m, 1H), 7.55 (t, J = 6.9 Hz,
(
(
CH
2
Cl
2
2H), 7.48 (d, J = 8.2 Hz, 2H), 7.38 (d, J = 8.2 Hz, 4H), 3.24 (s,
DOI: 10.1039/C5OB00836K
2H), 2.90 (t, J = 7.7 Hz, 2H), 2.82 (t, J = 7.7 Hz, 4H), 1.91–1.74
–
1
1
13
5
0
5
0
5
0
5
0
5
0
5
1465 (m), 1346 (m) cm ; H NMR (300 MHz, CDCl
.88 (m, 6H), 8.61 (d, J = 4.8 Hz, 2H), 8.17–8.08 (m, 7H), 7.98
d, J = 7.2 Hz, 1H), 7.87 (td, J = 7.6 Hz, J = 1.3 Hz, 1H), 7.73 (t, 65 140.6, 138.1, 138.0, 134.9, 133.9, 133.64, 133.59, 132.5, 132.21,
3
) δ 8.90–
(m, 6H), 1.62–1.44 (m, 6H), 1.09–1.01 (m, 9H); C NMR
8
3
(100 MHz, CDCl ) δ 175.2, 142.9, 142.8, 142.4, 142.34, 142.27,
(
J = 6.9 Hz, 1H), 7.57 (d, J = 8.1 Hz, 6H), 3.39 (s, 2H), 2.97 (t,
J = 7.7 Hz, 6H), 1.92 (pent, J = 7.6 Hz, 6H), 1.60 (sext,
132.17, 131.5, 129.3, 128.6, 126.9, 126.8, 125.7, 119.3, 119.1,
115.8, 38.6, 35.6, 35.5, 33.8, 33.7, 22.6, 22.5, 14.10, 14.07 (1
1
3
1
1
2
2
3
3
4
4
5
5
J = 7.4 Hz, 6H), 1.10 (t, J = 7.3 Hz, 9H), –2.73 (s, 2H); C NMR
75 MHz, CDCl ) δ 142.4, 141.3, 139.3, 139.0, 134.6, 134.5,
34.3, 132.0, 131.2 (br), 129.3, 127.5, 126.8, 126.72, 126.65, 70 calcd. for C58
21.1, 120.6, 117.8, 115.0, 35.6, 33.8, 22.8, 22.6, 14.1 (12 signals 941.3303.
signal coincident or not observed). ESI HRMS m/z calcd. for
+
(
3
C
58
H
54
N
4
NaNiO
2
([M + Na] ) 919.3493, found 919.3486; m/z
+
1
1
53 4 2 2
H N Na NiO ([M – H + 2Na] ) 941.3312, found
coincident or not observed). ESI HRMS m/z calcd. for C58
H
56
N
5
+
([M + H] ) 822.4530, found 822.4513.
Acknowledgements
Porphyrin 10. Porphyrin
9
(39 mg, 0.047 mmol) was
(4 mL) and H O (1.3 mL)
We are grateful for the financial support from the Institute for Oil
Sands Innovation at the University of Alberta, the Natural
Sciences and Engineering Research Council of Canada, and the
Graduate School Molecular Science (GSMS) at FAU. We thank
Dr. Alexander Scherer for his assistance, as well as Prof. Jürgen
Schatz and Dr. Max von Delius for helpful discussions regarding
assessment of the binding constants.
dissolved in AcOH (4 mL). H
2
SO
4
2
were added and the mixture heated to 95 °C for 90 h. The dark
green solution was cooled to rt and poured into ice water
(15 mL), whereupon a green precipitate formed. The solid was
7
5
collected by filtration, washed with H
in CH Cl (50 mL). The solution was washed with H
mL), a mixture of an aqueous saturated solution of NaHCO
O (2:1, 150 mL), and H O (50 mL). The solution was dried
over MgSO and filtered. The solvent was removed and the
residue was purified by column chromatography (silica gel,
CH Cl /EtOAc 9:1) to afford the product 10 (37 mg, 94%) as a
purple solid. Mp 255–258 °C. R = 0.58 (CH Cl /acetone 19:1).
2
O (50 mL), and dissolved
O (3 × 50
and
2
2
2
3
H
2
2
80
Notes and references
4
a
Department of Chemistry and Pharmacy & Interdisciplinary Center of
Molecular Materials (ICMM), Friedrich-Alexander-Universität
Erlangen-Nürnberg (FAU), Henkestraße 42, 91054 Erlangen, Germany.
Fax: +49-9131-85-26865; Tel: +49-9131-85-22540; E-mail:
2
2
f
2
2
UV-vis (THF) λmax (ε) 418 (567000), 514 (22500), 549 (10800),
85
592 (6220), 647 (4550) nm; IR (ATR) 3314 (w), 3021 (w), 2953
b
Department of Chemistry, University of Alberta, Edmonton, Alberta T6G
–
1
(
m), 2924 (m), 2855 (m), 1707 (m), 1467 (m), 1347 (m) cm ;
2G2, Canada
1
Electronic supplementary information (ESI) available: NMR spectra of
compounds 3–10, 2D NMR spectra of compound 4, as well as
experimental details and NMR data of the aggregation studies.
H NMR (300 MHz, CDCl
J = 4.8 Hz, 2H), 8.77 (d, J = 4.8 Hz, 2H), 8.61 (d, J = 4.8 Hz,
H), 8.14–8.00 (m, 7H), 7.76–7.68 (m, 1H), 7.58 (t, J = 8.9 Hz,
4H), 7.49 (d, J = 7.4 Hz, 2H), 7.36 (d, J = 6.8 Hz, 2H), 3.37 (s,
H), 2.97 (t, J = 7.7 Hz, 2H), 2.85 (t, J = 7.6 Hz, 4H), 1.97–1.78
m, 6H), 1.67–1.47 (m, 6H), 1.13–1.03 (m, 9H), –2.74 (br s, 2H);
3
) δ 8.86 (d, J = 4.9 Hz, 2H), 8.83 (d,
90
2
1
.
K. Aleklett, M. Höök, K. Jakobsson, M. Lardelli, S. Snowden and B.
Söderbergh, Energy Policy, 2010, 38, 1398-1414.
2
(
1
2
.
M. R. Gray and W. C. McCaffrey, Energy Fuels, 2002, 16, 756-766.
3
C NMR (100 MHz, CDCl
3
) δ 175.4, 142.3, 142.2, 141.9, 139.5,
95
3. I. Gawel, D. Bociarska and P. Biskupski, Appl. Catal., A, 2005, 295,
9-94.
1
39.2, 135.4, 134.6, 134.51, 134.46, 134.41, 131.1 (br), 129.3,
8
128.6, 126.7, 126.6, 125.5, 120.6, 120.3, 116.7, 38.9, 35.7, 35.6,
3.8, 33.7, 22.63, 22.58, 14.14, 14.10 (6 signals coincident or not
4
5
6
.
.
.
N. Haji-Akbari, P. Teeraphapkul and H. S. Fogler, Energy Fuels,
2014, 28, 909-919.
3
+
observed). ESI HRMS m/z calcd. for C58
H
57
N
4
O
2
([M + H] )
NaO
2
S. Chiaberge, G. Guglielmetti, L. Montanari, M. Salvalaggio, L.
Santolini, S. Spera and P. Cesti, Energy Fuels, 2009, 23, 4486-4495.
R. R. Chianelli, K. Castillo, V. Gupta, A. M. Qudah, B. Torres and R.
E. Abujnah, Asphaltene based photovoltaic devices. US Patent
8
41.4476, found 841.4476; m/z calcd. for
C
58
H
56
N
4
+
100
(
[M + Na] ) 863.4296, found 863.4314.
Porphyrin 3. Porphyrin 10 (14.7 mg, 0.0175 mmol) was
dissolved in CHCl (20 mL), and a solution of Ni(OAc) ·4H
0.100 g, 0.402 mmol) in MeOH (5 mL) was added. After heating
to reflux for 24 h in the dark, the solution was cooled to rt,
washed with H O (2 × 50 mL), a mixture of H
O and an aqueous 105
saturated solution of NaHCO (9:1, 50 mL), and H O (50 mL).
The organic layer was dried over MgSO and filtered. After
removal of the solvent, the residue was purified by column
chromatography (silica gel, gradient CH Cl /acetone 1:0 → 15:1)
3
2
2
O
2
014/0234026, August 21, 2014.
(
7
.
S. M. Hashmi, K. X. Zhong and A. Firoozabadi, Soft Matter, 2012, 8,
8778-8785.
2
2
8. M. R. Gray, R. R. Tykwinski, J. M. Stryker and X. Tan, Energy
Fuels, 2011, 25, 3125-3134.
3
2
4
9. M. P. Hoepfner and H. S. Fogler, Langmuir, 2013, 29, 15423-15432.
10. T. E. Havre and J. Sjöblom, Colloids Surf. A, 2003, 228, 131-142.
2
2
to yield the product 3 (15.0 mg, 95%) as a red-purple solid. Mp 110 11. S. B. Jaffe, H. Freund and W. N. Olmstead, Ind. Eng. Chem. Res.,
256–259 °C. R = 0.81 (CH Cl /acetone 19:1). UV-vis (CH Cl
max (ε) 415 (312000), 528 (22100) nm; IR (ATR) 3023 (w),
f
2
2
2
2
)
2
005, 44, 9840-9852.
λ
1
1
2. J. G. Speight, Oil Gas Sci. Technol., 2004, 59, 467-477.
–
1
2
1
953 (s), 2926 (s), 2859 (m), 1709 (m), 1460 (m), 1352 (m) cm ;
3. O. C. Mullins, H. Sabbah, J. Eyssautier, A. E. Pomerantz, L. Barré,
A. B. Andrews, Y. Ruiz-Morales, F. Mostowfi, R. McFarlane, L.
3
H NMR (300 MHz, CDCl ) δ 8.76 (d, J = 5.0 Hz, 2H), 8.73 (d,
6
| Journal Name, [year], [vol], 00–00
This journal is © The Royal Society of Chemistry [year]