3
204
B. Das et al. / Tetrahedron Letters 48 (2007) 3201–3204
Banerjee, J.; Ravindranath, N. Tetrahedron 2004, 60,
Table 2 (continued)
8
1
357–8361; (e) Li, J.; Wang, X.; Zhang, Y. Synlett 2005,
039–1041.
Entry
h
Alcohol
4
Iodide
5
Time
(min)
Isolated
yield (%)
5
. (a) Das, B.; Banerjee, J.; Mahender, G.; Majhi, A. Org.
Lett. 2004, 6, 3349–3352; (b) Das, B.; Banerjee, J.; Majhi,
A.; Mahender, G. Tetrahedron Lett. 2004, 45, 9225–9227;
OH
I
30
88
—
(
c) Das, B.; Mahender, G.; Chowdhury, N.; Banerjee, J.
Synlett 2005, 1000–1002; (d) Das, B.; Banerjee, J.; Ramu,
R.; Pal, P. M.; Ravindranath, N.; Ramesh, C. Tetrahedron
Lett. 2002, 44, 5465–5468; (e) Das, B.; Reddy, K. R.;
Ramu, R.; Tirupathi, P.; Ravikanth, B. Synlett 2006, 1756–
OH
i
No reaction
No reaction
120
1
758; (f) Das, B.; Ravikanth, B.; Ramu, R.; Laxminara-
yana, K.; Vittal Rao, B. J. Mol. Catal. A: Chem. 2006, 255,
74–77.
. General procedure for the preparation of allyl iodides and
benzylic iodides: To a solution of Baylis–Hillman adduct
OH
j
120
120
—
—
6
k
3 2 7
CH –(CH ) OH No reaction
(
(
0.5 mmol) or benzylic alcohol (0.5 mmol) and PMHS
0.75 mmol) in chloroform (5 mL), iodine (0.5 mmol) was
a
The structures of the iodides were determined from their spectral (IR,
H NMR and MS) and analytical data.
1
added. The reaction was allowed to stir at room temper-
ature for 20–30 min. The reaction was monitored by TLC.
On completion of the reaction, the solvent was evaporated
under vacuum and the reaction mixture was dissolved in
hexane and passed through a silica gel column using
hexane–ethyl acetate as eluent. Evaporation of the solvent
afforded the iodinated product in pure form. Spectral and
analytical data of novel allyl iodides and benzyl iodides are
given below.
Baylis–Hillman adducts and benzylic iodides from benz-
ylic alcohols in excellent yields at room temperature.
Operational simplicity, short reaction times, high yields
and impressive stereo- and chemoselectivities are advan-
tages of this method.
Compound 2c: IR (KBr): 1709, 1606, 1509, 1462,
À1
1
1
263 cm ; H NMR (CDCl , 200 MHz): d 7.62 (1H, s),
3
Acknowledgement
7
.42 (2H, d, J = 8.0 Hz), 7.22 (2H, d, J = 8.0 Hz), 4.28
(
2H, s), 4.22 (2H, q, J = 7.0 Hz), 2.85 (1H, m), 1.33 (3H, t,
The authors thank the UGC and CSIR, New Delhi, for
financial assistance.
J = 7.0 Hz), 1.25 (6H, d, J = 7.0 Hz); EIMS: m/z 231
+
Å
(M ÀI); Anal. Calcd for C15
H19IO : C, 50.28; H, 5.28.
2
Found: C, 50.18; H, 5.31.
Compound 2h: IR (KBr): 2210, 1686, 1599, 1509, 1261,
À1
; H NMR (CDCl , 200 MHz): d 7.72 (2H, d,
3
1
1
176 cm
References and notes
J = 8.0 Hz), 7.14 (1H, s), 6.88 (2H, d, J = 8.0 Hz), 4.14 (2H,
+
Å
s), 3.82 (3H, s); EIMS: m/z 172 (M ÀI); Anal. Calcd for
10ION: C, 44.15; H, 3.34. Found: C, 44.22; H, 3.26.
Compound 2j: IR (KBr): 2225, 1634, 1460, 1163,
1
. (a) Baylis, A. B.; Hillman, M. E. D. German Patent
155113, 1972; Chem. Abstr. 1972, 77, 34174q; (b) Basava-
iah, D.; Rao, A. J.; Satyanarayana, T. Chem. Rev. 2003,
03, 811–891, and references cited therein.
. (a) Buchholz, R.; Hoffmann, H. M. R. Helv. Chim. Acta
991, 74, 1213–1220; (b) Hoffmann, H. M. R.; Rabe, J.
Angew. Chem., Int. Ed. Engl. 1985, 24, 94–110; (c) Basa-
vaiah, D.; Bakthadoss, M.; Pandiaraju, S. J. Chem. Soc,
Chem. Commun. 1998, 1639–1640.
11
C H
2
À1
1
1
114 cm
J = 7.0 Hz), 3.91 (2H, s), 2.35 (2H, q, J = 7.0 Hz), 1.62–
.47 (2H, m), 0.90 (3H, t, J = 7.0 Hz); EIMS: m/z 108
; H NMR (CDCl , 200 MHz): d 6.42 (1H, t,
3
1
2
1
(
1
+
Å
M ÀI); Anal. Calcd for C H IN: C, 35.74; H, 4.26.
7
10
Found: C, 35.62; H, 4.24.
Compound 5b: IR (KBr): 3012, 2910, 1594, 1507, 1410,
À1
1
1
7
(
(
172, 1150, 810, 718 cm ; H NMR (CDCl , 200 MHz): d
3
3
. (a) McFadden, H. G.; Harris, R. L. N.; Jenkins, C. L. D.
Aust. J. Chem. 1989, 42, 301–314; (b) Chavan, S. P.;
Ethiraj, K. S.; Kamat, S. K. Tetrahedron Lett. 1997, 38,
.32 (1H, d, J = 2.0 Hz), 7.20 (1H, dd, J = 8.0, 2.0 Hz), 7.08
1H, d, J = 8.0 Hz), 4.44 (2H, s); EIMS: m/z 160, 162, 164
+
Å
M ÀI); Anal. Calcd for C
7 5 2
H Cl I: C, 29.27; H, 1.74.
Found: C, 29.34; H, 1.78.
Compound 5g: IR (KBr): 3062, 2986, 1595, 1521, 1416,
7
415–7416; (c) Goldberg, O.; Dreiding, A. S. Helv. Chim.
Acta 1976, 59, 1904–1910; (d) Hoffmann, H. M. R.; Rabe,
J. Angew. Chem., Int. Ed. Engl. 1983, 22, 795–796; (e)
Hoffmann, H. M. R.; Rabe, J. J. Org. Chem. 1985, 50,
849–3859; (f) Semmelhack, M. F.; Wu, E. S. C. J. Am.
Chem. Soc. 1976, 98, 3384–3386; (g) Das, B.; Banerjee, J.;
Ravindranath, N.; Venkataiah, B. Tetrahedron Lett. 2004,
À1
1
1
8
212, 1112, 838, 675 cm ; H NMR (CDCl
3
, 200 MHz): d
.12 (2H, d, J = 8.0 Hz), 7.50 (2H, d, J = 8.0 Hz), 5.28 (1H,
q, J = 7.0 Hz), 2.16 (3H, d, J = 7.0 Hz); EIMS: m/z 150
3
+
Å
(
M ÀI); Anal. Calcd for C
8 8 2
H IO N: C, 34.66; H, 2.89.
Found: C, 34.58; H, 2.84.
4
5, 2425–2426; (h) Guriec, A.; Goucaud, A. New J. Chem.
7
. (a) Lawrence, N. J.; Drew, M. D.; Bushell, S. M. J. Chem.
Soc., Perkin Trans. 1 1999, 3381–3391; (b) Chandrasekhar,
S.; Chandrasekhar, G.; Reddy, M. S.; Srihari, P. Org.
Biomol. Chem. 2006, 4, 1650–1652; (c) Yadav, J. S.; Subba
Reddy, B. V.; Premalatha, K.; Swamy, T. Tetrahedron Lett.
1991, 15, 943.
4
. (a) Ameer, F.; Drewes, S. E.; Houston-McMillan, M. S.;
Kaye, P. T. J. Chem. Soc., Perkin Trans. 1 1985, 1143–1145;
b) Yadav, J. S.; Reddy, B. V. S.; Madan, C. New J. Chem.
001, 25, 1114–1117; (c) Li, J.; Xu, H.; Zhang, Y.
Tetrahedron Lett. 2005, 46, 1931–1934; (d) Das, B.;
(
2
2
005, 46, 2687–2690.