Potential Lipophilic Nucleotide Prodrugs
J . Org. Chem., Vol. 61, No. 3, 1996 901
3.69 (m, 1 H), 2.29 (t, 2 H, J ) 7.3 Hz), 1.82 (s, 3 H), 1.56-
1.39 (m, 2 H, CH2 â), 1.26 (br s, 20 H), 0.89 (t, 3 H, J ) 6.5
Hz); 13C NMR (D2O) δ 172.0 (d, J C-P ) 9.4 Hz), 166.8, 152.5,
138.7, 135.0, 126.6, 111.9, 90.5, 86.7 (d, J C-P ) 8.7 Hz), 67.5
(d, J C-P ) 4.0 Hz), 35.9 (d, J C-P ) 5.6 Hz), 32.8, 30.7-29.8,
Tetr a d eca n oyl 3′-O-a cetyl-5′-th ym id in yld ip h osp h a te
(2c): 3′-O-acetyl-5′-thymidine (14c) (284 mg, 1 mmol) was
treated with 15 and DCC as described for the preparation of
2a , giving 170 mg of 2c disodium salt (24%);24 1H NMR
(DMSO-d6) δ 11.29 (br s, 1 H), 7.87 (br s), 6.21 (dd, 1 H, J )
5.7, 9.3 Hz), 5.21 (d, 1 H, J ) 5.5 Hz), 4.11-4.03 (br s, 1H),
4.0,1-3.83 (m, 2H), 2.31 (ddd, 1 H, J ) 5.5, 9.3, 13.7 Hz), 2.28
(t, 2H, J ) 7.3 Hz), 2.16 (dd, 1H, J ) 5.7, 13.7 Hz), 2.05 (s, 3
H), 1.81 (s, 3 H), 1.52-1.36 (m, 2 H), 1.21 (br s, 20 H), 0.84 (t,
3H, J ) 7.6 Hz); 13C NMR (DMSO-d6) δ 170.8 (d, J C-P ) 9.0
Hz), 170.1, 164.0, 150.8, 136.4, 110.5, 83.8, 83.4 (d, J C-P ) 8.5
Hz), 75.9, 65.0 (d, J C-P ) 5.0 Hz), 36.4, 35.1 (d, J C-P ) 4.5
Hz), 31.5, 29.3-28.6, 24.4, 22.3, 21.0, 14.1 , 12.3; 31P NMR
(DMSO-d6) δ -8.11 (br dt, 1 P, J P-P ) 19.1 Hz, J C-P ) 7.5
Hz), -15.98 (d, 1 P, J P-P ) 19.1 Hz); MS FAB+ for C26H42N2-
25.3, 23.5, 14.7, 12.5; 31P NMR (CDCl3) δ -10.00 (t, J P-H
)
5.3 Hz); 31P NMR (DMSO-d6) δ -6.00 (t, J P-H ) 6.7 Hz). MS
FAB- for C24H38O8N2PNa m/ z 513 (M - Na)-.
Tetr a d eca n oyl (3′-a zid o-3′-d eoxy-5′-th ym id in yld ip h os-
p h a te (2a ): 2.5 mL of a 0.4 M methylene chloride stock
solution of tris(tributylammonium) myristoyl pyrophosphate
(15) (1 mmol) was added to 267 mg of AZT (14a ) (1 mmol).
The mixture was evaporated in vacuo and redissolved in 5 mL
of anhydrous THF, and then 1.03 g of DCC (5 mmol) was
added. The mixture was kept 24 h at rt. Myristoyl pyrophos-
phate 15 (0.4 M solution) (2.5 mL, 1 mmol) and 500 mg of DCC
(2.5 mmol) were mixed, evaporated, redissolved in 2.5 mL of
THF and added to the reaction mixture. This reagent addition
was repeated every 24 h until no more AZT could be detected
by TLC (generally 72 h reaction, 3 equiv 15 and 10 equiv of
DCC). In order to destroy excess DCC, the reaction mixture
was diluted with 50 mL of anhydrous THF and 900 mg of
oxalic acid (10 mmol), dissolved in 50 mL of THF, were added
dropwise over 4 h, checking regularly that the pH did not drop
under 3. THF was evaporated in vacuo and the residue
dissolved in 20 mL of CH2Cl2. The solution was kept overnight
at -10 °C and then filtered. The solvent was evaporated in
vacuo, and toluene and 100 mM carbonate buffer, pH 7.0 (10
mL each), were added at 0 °C. The mixture was decanted by
centrifugation and the organic phase24 extracted two times
with 5 mL of water. The aqueous phases were filtered and
directly purified using reverse phase flash chromatography
and preparative HPLC, as described in the general methods
section, and finally desalted on Sephadex G10 at 4 °C. The
fractions containing the product were lyophilized and condi-
tioned in the sodium form on Dowex AG50 WX8 200 (Na+),14
giving 153 mg 2a disodium salt (23%): 1H NMR (DMSO-d6) δ
11.12 (br s, 1 H), 7.87 (br d, 1 H, J ) 1.0 Hz), 6.16 (dd, 1 H, J
) 6.2, 7.9 Hz), 4.69-4.61 (m, 1 H), 4.01-3.95 (br s, 1H), 3.96-
3.80 (m, 2H), 2.50-2.35 (m, partly in DMSO signal, J ) 14.0
Hz), 2.31 (t, 2H, J ) 7.3 Hz), 2.22 (ddd, 1H, J ) 3.0, 6.2, 14.0
Hz), 1.82 (s, 3 H), 1.54-1.38 (m, 2 H), 1.24 (br s, 20 H), 0.86
O
13P2Na2 m/ z 722 (M + Na)+, 699.9 (M + H)+. Anal. Calcd
for C26H42N2O13P2Na2‚2H2O: C, 42.51; H, 6.31; N, 3.81; P, 8.43.
Found: C, 42.61; H, 5.93; N, 3.85; P, 7.71.
13-Oxa tetr a d eca n oyl 3′-a zid o-3′-d eoxy-5′-th ym id in yl-
d ip h osp h a te (3a ): AZT (14a ) (134 mg, 0.5 mmol), 13-
oxatetradecanoyl pyrophosphate (16) and DCC were mixed in
2.5 mL of THF as described for 2a , giving 68 mg of 3a disodium
salt (20%);24 1H NMR (D2O) δ 7.80 (s, 1 H), 6.29 (t, 1 H, J )
6.7 Hz), 4.63-4.50 (m, 1 H), 4.30-4.10 (m, 3 H), 3.48 (t, 2 H,
J ) 6.7 Hz), 3.34 (s, 3 H), 2.48 (t, 2 H, J ) 5.9 Hz), 2.42 (t, 2
H, J ) 7.4 Hz), 1.94 (s, 3 H), 1.65-1.50 (m, 4 H), 1.35-1.15
(m, 14 H); 13C NMR (D2O) δ 172.8 (d, J C-P ) 9.4 Hz), 167.0,
152.1, 137.9, 112.4, 85.4, 83.6 (d, J C-P ) 9.2 Hz), 73.4, 66.2 (d,
J C-P ) 5.6 Hz), 61.5, 58.2, 37.1, 35.5 (d, J C-P ) 6.2 Hz), 33.5,
29.2-28.7, 25.8, 24.5, 12.3; 31P NMR (D2O) δ -11.48 (br d,
1P, J P-P ) 21.3 Hz), -19.21 (d, 1P, J P-P ) 21.3 Hz); MS FAB+
for C23H37N5O12P2Na2 m/ z 706 (M + Na)+, 684 (M + H)+.
13-Oxa tetr a d eca n oyl 3′-d eoxy-2′,3′-d id eh yd r o-5′-th y-
m id in yld ip h osp h a te (3b): d4T (14b) (112 mg, 0.5 mmol)
was treated with 16 and DCC as described for 3a , giving 60
mg of 3b disodium salt (15%);24 1H NMR for 3b bis(triethyl-
ammonium) salt (D2O) δ 7.69 (d, 1 H, J ) 1 Hz), 6.94 (q, 1 H,
J ) 1.6 Hz), 6.51 (dt, 1 H, J ) 1.6, 6.1 Hz), 5.93 (dt, 1 H, J )
1.6, 5.8 Hz), 5.09 (br s, 1 H), 4.20-4.07 (m, 2 H), 3.47 (t, 2 H,
J ) 6.7 Hz), 3.33 (s, 3 H), 3.19 (q, 18 H, J ) 7.5 Hz), 2.40 (t,
2 H, J ) 7.4 Hz), 1.90 (d, 3 H, J ) 1.0 Hz), 1.22-1.52 (m, 4
H), 1.27 (t, 27 H, J ) 7.5 Hz), 1.23 (br s, 14 H); 13C NMR (D2O)
δ 172.5 (d, J ) 9.6 Hz), 167.3, 152.7, 139.0, 134.9, 126.1, 112.2,
90.5, 86.6 (d, J C-P ) 8.4 Hz), 73.5, 67.2 (d, J C-P ) 6.1 Hz),
58.6, 47.3, 35.6 (d, J C-P ) 6.2 Hz), 29.6-28.8, 25.9, 24.6, 12.6,
8.9; 31P NMR (D2O) δ -11.41 (br d, 1P, J ) 23.0 Hz), -19.33
(t, 3H, J ) 6.6 Hz); 13C NMR (DMSO-d6) δ 170.7 (d, J C-P
)
9.0 Hz), 164.0, 150.8, 136.4, 110.3, 83.7, 83.2 (d, J C-P ) 8.5
Hz), 64.7 (d, J C-P ) 7.5 Hz), 61.3, 35.9, 34.9, 33.6, 29.0-28.4,
24.4, 24.1, 22.0, 13.9, 12.1; 31P NMR (DMSO-d6) δ -8.38 (dt,
+
(d, 1P, J ) 23.0 Hz); MS FAB+ for C23H36N2O12P2 2HNEt3
1 P, J P-P ) 20.6 Hz, J P-H ) 6.0 Hz), -16.10 (d, 1 P, J P-P
)
20.6 Hz); 31P NMR (D2O) δ -11.02 (br s 50 Hz, 1 P), -18.88
(br s, 50 Hz, 1 P); MS FAB+ for C24H39N5O11P2Na2 m/ z 704
(M + Na)+. Anal. Calcd for C24H39N5O11P2Na2‚H2O: C, 41.21;
H, 5.91; N, 10.01; P, 8.86. Found: C, 40.92; H, 5.11; N, 9.50;
P, 8.13.
m/ z 799.9 (M + H)+.
Tetr a d eca n oyl 3′-a zid o-3′-d eoxy-5′-th ym id in yltr ip h os-
p h a te (4a ): 212 mg of AZT phosphoromorpholidate (17a )9c
(0.3 mmol) and 1.5 mL of 0.4 M methylene chloride solution
of tris(tributylammonium) myristoyl pyrophosphate (15) (0.6
mmol) were evaporated and redissolved in 5 mL of anhydrous
THF; 209 mg of camphorsulfonic acid was then added (0.9
mmol, 1.5 equiv in respect to pyrophosphate 15). The mixture
was kept 4 h at rt under magnetic stirring. The solution was
then cooled to 0 °C, diluted with 10 mL of toluene, and
extracted with three times 5 mL of TEAA, 1 M, pH 7.0. The
aqueous phases were pooled together, lyophilized, and purified
as described for acyl NDPs, giving 48 mg of 4a trisodium salt
(20%);13 1H NMR (DMSO-d6) δ 11.28 (br s, 1 H), 7.85 (br s, 1
H), 6.20 (t, 1 H, J ) 7.1 Hz), 4.72-4.61 (m, 1 H), 4.12-3.92
(br s, 3H), 2.38 (t, 2H, J ) 7.0 Hz), 2.35-2.30 (m, 1H), 2.30-
2.17 (m, 1 H), 1.87 (s, 3 H), 1.60-1.45 (m, 2 H), 1.28 (br s, 20
Tetr a d eca n oyl 3′-d eoxy-2′,3′-d id eh yd r o-5′-th ym id in yl-
d ip h osp h a te (2b): d4T (14b) (224 mg, 1 mmol) was treated
with 15 and DCC as described for the preparation of 2a , giving
102 mg of 2b disodium salt (16%);24 1H NMR (DMSO-d6) δ
11.13 (br s, 1H), 7.57 (d, 1 H, J ) 1.0 Hz), 6.70 (m, 1 H, J )
1.6 Hz), 6.31 (br d, 1 H, J ) 5.9 Hz), 5.74 (br d, 1 H, J ) 5.6
Hz), 4.74 (br s, 1H), 3.94-3.82 (m, 1 H), 3.77-3.65 (m, 1 H),
2.18 (t, 2 H, J ) 7.4 Hz), 1.69 (br s, 3 H), 1.42-1.28 (m, 2 H),
1.25 (br s, 20 H), 0.73 (t, 3 H, J ) 6.6 Hz); 13C NMR (DMSO-
d6) δ 170.7 (d, J C-P ) 9.0 Hz), 164.0, 150.8, 136.8, 134.8, 125.9,
109.8, 88.7, 85.7 (d, J C-P ) 9.0 Hz), 65.4 (d, J C-P ) 4.5 Hz),
35.0 (d, J C-P ) 4.5 Hz), 31.4, 29.1-28.5, 24.3, 22.2, 14.0, 12.0;
31P NMR (DMSO-d6) δ -8.31 (dt, 1 P, J P-P ) 20.7 Hz, J C-P
)
H), 0.90 (t, 3H, J ) 6.8 Hz); 13C NMR (D2O) δ 173.1 (d, J C-P
)
4.8 Hz), -16.10 (d, 1 P, J P-P ) 20.7 Hz); 31P NMR (D2O) δ
-11.99 (dt, 1 P, J P-P ) 20.5 Hz, J C-P ) 4.8 Hz), -19.02 (d, 1
P, J P-P ) 20.5 Hz); MS FAB+ for C24H38N2O11P2Na2 m/ z 662
(M + Na)+, 639 (M + H)+. Anal. Calcd for C24H38N2-
9.9 Hz), 167.3, 152.4, 138.2, 112.7, 85.9, 84.0 (d, J C-P ) 8.3
Hz), 66.7 (d, J C-P ) 7.4 Hz), 62.1, 37.4, 35.8, 32.3, 31.2, 29.8-
29.2, 24.8, 23.1, 14.4, 12.6; 31P NMR (DMSO-d6) δ -6 to -7
(m, 1P), -14.8 to -15.8 (m, 1P), -15.8 to -16.8 (m, 1P); 31P
NMR (D2O, proton decoupled) δ -11.03 (d, 1 P, J ) 18.6 Hz),
-19.04 (d, 1 P, J ) 18.6 Hz), -22.69 (t, 1P, J ) 18.6 Hz); MS
FAB+ for C24H39N5O14P3Na3 m/ z 806.6 (M + Na)+, 784.8 (M
+ H)+. Anal. Calcd for C24H39N5O14P3Na3‚2.5H2O: C, 34.79;
H, 5.35; N, 8.45; P, 11.22. Found: C, 34.71; H, 5.15; N, 7.49;
P, 10.83.
O
11P2Na2‚2H2O: C, 42.72; H, 6.28; N, 4.15; P, 9.19. Found:
C, 42.33; H, 5.89; N, 3.85; P, 10.31.
(24) The organic layer contains mainly 5′-acyl nucleoside. After
evaporation, Zemplen deacylation, and silica gel flash chromatography,
20-40% starting nucleoside could be recovered.