Author Name / Journal of Organometallic Chemistry
[52] O. Santoro, A. Collado, A.M. Slawin, S.P. Nolan, C.S. Cazin, A general synthetic
defined N-heterocyclic carbene silver(I) complexes, Organometallics 24 (2005)
route to [Cu(X)(NHC)] (NHC = N-heterocyclic carbene, X = Cl, Br, I) complexes,
6301−6309.
Chem. Commun. 49 (2013) 10483−10485.
[53] B. Liu, X. Ma, F. Wu, W. Chen, Simple synthesis of neutral and cationic Cu-NHC
complexes, Dalton Trans. 44 (2015) 1836−1844.
[82] E.A. Baquero, G.F. Silbestri, P. Gómez-Sal, J.C. Flores, E. de Jesús, Sulfonated
water-soluble N-heterocyclic carbene silver(I) complexes: Behavior in aqueous
medium and as NHC-transfer agents to Platinum(II), Organometallics 32 (2013)
2814−2826.
[54] A. Johnson, M.C. Gimeno, An efficient and sustainable synthesis of NHC gold
[83] S. Tao, C. Guo, N. Liu, B. Dai, Counteranion-controlled Ag2O-mediated
benzimidazolium ring opening and its application in the synthesis of palladium
pincer-type complexes, Organometallics 36 (2017) 4432-4442.
[84] G. Rodríguez-López, P. Montes-Tolentino, T.O. Villaseñor-Granados, A. Flores-
Parra, New silver imidazol-2-ylidene complexes with pendant N-β-chloroethyl and
N-vinyl groups. Cl⋅⋅⋅N and C−H⋅⋅⋅Ag weak interactions, J. Organomet. Chem. 848
(2017) 166−174.
complexes, Chem. Commun. 52 (2016) 9664−9667.
[55] S.L. Shostak, W.L. Ebenstein, J.S. Muenter, The dipole moment of water. I. Dipole
moments and hyperfine properties of H2O and HDO in the ground and excited
vibrational states, J. Chem. Phys. 94 (1991) 5875−5882.
[56] K. Gustafsson, S. Andersson, Dipole active vibrations and dipole moments of N2
and O2 physisorbed on a metal surface, J. Chem. Phys. 125 (2006) 044717.
[57] Molinspiration software (online server), Calculation of Molecular Properties and
[58] I.V. Tetko, J. Gasteiger, R. Todeschini, A. Mauri, D. Livingstone, P. Ertl, V.A.
Palyulin, E.V. Radchenko, N.S. Zefirov, A.S. Makarenko, V.Y. Tanchuk, V.V.
Prokopenko, Virtual computational chemistry laboratory−design and description,
J. Comput. Aid. Mol. Des. 19 (2005) 453−463.
[59] Virtual Computational Chemistry Laboratory (online server), ALOGPS 2.1
[60] B.R.M. Lake, C.E. Willans, Remarkable stability of copper(II)–N-heterocyclic
carbene complexes void of an anionic tether, Organometallics 33 (2014)
2027−2038.
[61] S. Zhang, H. Fallah, E.J. Gardner, S. Kundu, J.A. Bertke, T.R. Cundari, T.H.
Warren, A dinitrogen dicopper(I) complex via a mixed-valence dicopper hydride,
Angew. Chem. Int. Ed. 55 (2016) 9927−9931.
[62] L. Chiang, W. Keown, C. Citek, E.C. Wasinger, T.D.P. Stack, Simplest
monodentate imidazole stabilization of the oxy-tyrosinase Cu2O2 core: Phenolate
hydroxylation through a CuIII intermediate, Angew. Chem. Int. Ed. 55 (2016)
10453−10457.
[85] X. Wang, S. Liu, L.-H. Weng, G.-X. Jin, A trinuclear silver(I) functionalized N-
heterocyclic carbene complex and its use in transmetalation:ꢀ Structure and
catalytic activity for olefin polymerization, Organometallics 25 (2006) 3565−3569.
[86] B.J. van Lierop, A.M. Reckling, J.A.M. Lummiss, D.E. Fogg, Clean, convenient,
high-yield access to second-generation Ru metathesis catalysts from
commercially available precursors, ChemCatChem 4 (2012) 2020−2025.
[87] A.P. Marchenko, H.N. Koidan, A.N. Hurieva, I.I. Pervak, S.V. Shishkina, O.V.
Shishkin, A.N. Kostyuk, Stable N-Heterocyclic carbenes: N-Alkyl-N'-
phosphanylbenzimidazol-2-ylidenes, Eur. J. Org. Chem. (2012) 4018−4033.
[88] A.I. Solomatina, D.V. Krupenya, V.V. Gurzhiy, I. Zlatkin, A.P. Pushkarev, M.N.
Bochkarev, N.A. Besley, E. Bichoutskaia, S.P. Tunik, Cyclometallated platinum(II)
complexes containing NHC ligands: Synthesis, characterization, photophysics
and their application as emitters in OLEDs, Dalton Trans. 44 (2015) 7152−7162.
[89] S. Tiede, A. Berger, D. Schlesiger, D. Rost, A. Lühl, S. Blechert, Highly active
chiral ruthenium-based metathesis catalysts through a monosubstitution in the N-
heterocyclic carbene, Angew. Chem. Int. Ed. 49 (2010) 3972−3975.
[90] Y. Chai, L. Wang, H. Sun, C. Guo, Y. Pan, Gas-phase chemistry of benzyl cations
in dissociation of N-benzylammonium and N-benzyliminium ions studied by mass
spectrometry, J. Am. Soc. Mass Spectrom. 23 (2012) 823−833.
[63] G. Speier, Z. Tyeklár, P. Tóth, E. Speier, S. Tisza, A. Rockenbauer, A.M. Whalen,
N. Alkire, C.G. Pierpont, Valence tautomerism and metal-mediated catechol
oxidation for complexes of copper prepared with 9,10-phenanthrenequinone,
Inorg. Chem. 40 (2001) 5653−5659.
[91] Y. Zhu, C. Cai, G. Lu, N-heterocyclic carbene-catalyzed α-alkylation of ketones
with primary alcohols, Helv. Chim. Acta 97 (2014) 1666−1671.
[64] A.M. Reynolds, B.F. Gherman, C.J. Cramer, W.B. Tolman, Characterization of a
1:1 Cu−O2 adduct supported by an anilido imine ligand, Inorg. Chem. 44 (2005)
6989−6997.
[92] G.K. Dedzo, S. Letaief, C. Detellier, Kaolinite–ionic liquid nanohybrid materials as
electrochemical sensors for size-selective detection of anions, J. Mater. Chem. 22
(2012) 20593−20601.
[65] E.E. Chufán, B. Mondal, T. Gandhi, E. Kim, N.D. Rubie, P. Moënne-Loccoz, K.D.
Karlin, Reactivity studies on FeIII−(O22-)−CuII compounds:ꢀ Influence of the ligand
architecture and copper ligand denticity, Inorg. Chem. 46 (2007) 6382−6394.
[66] M.A. Mairena, J. Urbano, J. Carbajo, J.J. Maraver, E. Alvarez, M.M. Díaz-Requejo,
P.J. Pérez, Effects of the substituents in the TpxCu activation of dioxygen:ꢀ An
experimental study, Inorg. Chem. 46 (2007) 7428−7435.
[93] A. Beillard, X. Bantreil, T.-X. Métro, J. Martinez, F. Lamaty, Mechanochemistry for
facilitated access to N,N-diaryl NHC metal complexes, New J. Chem. 41 (2017)
1057−1063.
[94] L. Hintermann, Expedient syntheses of the N-heterocyclic carbene precursor
imidazolium salts IPr·HCl, IMes·HCl and IXy·HCl, Beilstein J. Org. Chem. 3
(2007) doi: 10.1186/1860-5397-3-22.
[67] M. Kodera, K. Katayama, Y. Tachi, K. Kano, S. Hirota, S. Fujinami, M. Suzuki,
[95] H. Zhao, F.W. Foss, R. Breslow, Artificial enzymes with thiazolium and
imidazolium coenzyme mimics, J. Am. Chem. Soc. 130 (2008) 12590−12591.
[96] K.H. Park, I. Ku, H.J. Kim, S.U. Son, NHC-based submicroplatforms for anchoring
transition metals, Chem. Mater. 20 (2008) 1673−1675.
Crystal structure and reversible O2-binding of a room temperature stable µ-η2:η2-
peroxodicopper(II) complex of
a sterically hindered hexapyridine dinucleating
ligand, J. Am. Chem. Soc. 121 (1999) 11006−11007.
[68] P. Chen, D.E. Root, C. Campochiaro, K. Fujisawa, E.I. Solomon, Spectroscopic
[97] C. Gibard, D. Avignant, F. Cisnetti, A. Gautier, CuAAC functionalization of azide-
tagged copper(I)-NHCs acting as catalyst and substrate, Organometallics 31
(2012) 7902−7908.
and electronic structure studies of the diamagnetic side-on CuII-superoxo complex
Cu(O2)[HB(3-R-5-iPrpz)3]:ꢀ
Antiferromagnetic
coupling
versus
covalent
delocalization, J. Am. Chem. Soc. 125 (2003) 466−474.
[98] S. Dierick, D.F. Dewez, I.E. Markó, IPr*(2-Np)—An exceedingly bulky N-
[69] G.Y. Park, M.F. Qayyum, J. Woertink, K.O. Hodgson, B. Hedman, A.A. Narducci
Sarjeant, E.I. Solomon, K.D. Karlin, Geometric and electronic structure of
heterocyclic carbene, Organometallics 33 (2014) 677−683.
[99] F. Izquierdo, S. Manzini, S.P. Nolan, The use of the sterically demanding IPr* and
related ligands in catalysis, Chem. Commun. 50 (2014) 14926−14937.
[100] M.S. Gordon, M.W. Schmidt, Chapter 41−Advances in electronic structure theory:
GAMESS a decade later, in: C.E. Dykstra, G. Frenking, K.S. Kim, G.E. Scuseria
(Eds.), Theory and applications of computational chemistry, Elsevier, Amsterdam,
2005, pp. 1167−1189.
[101] M.W. Schmidt, K.K. Baldridge, J.A. Boatz, S.T. Elbert, M.S. Gordon, J.H. Jensen,
S. Koseki, N. Matsunaga, K.A. Nguyen, S. Su, T.L. Windus, M. Dupuis, J.A.
Montgomery, General atomic and molecular electronic structure system, J.
Comput. Chem. 14 (1993) 1347−1363.
2
[{Cu(MeAN)}2(µ-η2:η2(O2 –))]2+ with an unusually long O–O bond: O–O bond
weakening vs activation for reductive cleavage, J. Am. Chem. Soc. 134 (2012)
8513−8524.
[70] E. Pidcock, S. DeBeer, H.V. Obias, B. Hedman, K.O. Hodgson, K.D. Karlin, E.I.
Solomon, A study of solid [{Cu(MePY2)}2O2]2+ using resonance Raman and X-ray
absorption spectroscopies:ꢀ An intermediate Cu2O2 core structure or
a solid
solution?, J. Am. Chem. Soc. 121 (1999) 1870−1878.
[71] V. Mahadevan, M.J. Henson, E.I. Solomon, T.D.P. Stack, Differential reactivity
between interconvertible side-on peroxo and bis-µ-oxodicopper isomers using
peralkylated diamine ligands, J. Am. Chem. Soc. 122 (2000) 10249−10250.
[72] L.M. Mirica, M. Vance, D.J. Rudd, B. Hedman, K.O. Hodgson, E.I. Solomon,
T.D.P. Stack, A stabilized µ-η2:η2 peroxodicopper(II) complex with a secondary
diamine ligand and its tyrosinase-like reactivity, J. Am. Chem. Soc. 124 (2002)
9332−9333.
[102] J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made
Simple, Phys. Rev. Lett. 77 (1996) 3865−3868.
[103] P.J. Hay, W.R. Wadt, Ab initio effective core potentials for molecular calculations.
Potentials for the transition metal atoms Sc to Hg, J. Chem. Phys. 82 (1985)
270−283.
[73] C. Citek, B.-L. Lin, T.E. Phelps, E.C. Wasinger, T.D.P. Stack, Primary amine
stabilization of a dicopper(III) bis(µ-oxo) species: Modeling the ligation in pMMO,
J. Am. Chem. Soc. 136 (2014) 14405−14408.
[74] In the presence of DABCO (radical scavenger), the oxidation of 1c was four times
slower. If the oxidation was only going through O-radical, the oxidation should
stop. Thus, the slower oxidation also indicated other possible processes.
[75] L. Zhang, H.Y. Kim, G. Henkelman, CO oxidation at the Au–Cu interface of
bimetallic nanoclusters supported on CeO2(111), J. Phys. Chem. Lett. 4 (2013)
2943−2947.
[104] W.R. Wadt, P.J. Hay, Ab initio effective core potentials for molecular calculations.
Potentials for main group elements Na to Bi, J. Chem. Phys. 82 (1985) 284−298.
[105] P.J. Hay, W.R. Wadt, Ab initio effective core potentials for molecular calculations.
Potentials for K to Au including the outermost core orbitals, J. Chem. Phys. 82
(1985) 299−310.
[106] T.H. Dunning, P.J. Hay, Gaussian basis sets for molecular calculations, in: H.F.
Schaefer (Ed.), Methods of electronic structure theory, Springer US, Boston, MA,
1977, pp. 1−27.
[107] T.H. Dunning, Gaussian basis functions for use in molecular calculations. I.
Contraction of (9s5p) atomic basis sets for the first-row atoms, J. Chem. Phys. 53
(1970) 2823−2833.
[76] K.P. Kepp, A quantitative scale of oxophilicity and thiophilicity, Inorg. Chem. 55
(2016) 9461−9470.
[108] K.L. Schuchardt, B.T. Didier, T. Elsethagen, L. Sun, V. Gurumoorthi, J. Chase, J.
Li, T.L. Windus, Basis set exchange:ꢀ A community database for computational
sciences, J. Chem. Inf. Model. 47 (2007) 1045−1052.
[77] K.V.N. Esguerra, J.-P. Lumb, Cu(III)-mediated aerobic oxidations, Synthesis 51
(2019) 334−358.
[78] G. Yassaghi, E. Andris, J. Roithová, Reactivity of copper(III)–oxo complexes in the
[109] D. Feller, The role of databases in support of computational chemistry
gas phase, ChemPhysChem 18 (2017) 2217−2224.
calculations, J. Comput. Chem. 17 (1996) 1571−1586.
September 2018).
[111] M.D. Hanwell, D.E. Curtis, D.C. Lonie, T. Vandermeersch, E. Zurek, G.R.
Hutchison, Avogadro: An advanced semantic chemical editor, visualization, and
analysis platform, J. Cheminform. 4 (2012) 1−17.
[112] Avogadro: an open-source molecular builder and visualization tool (Version
[79] B. Chowdhury, M.H. Mondal, M.K. Barman, B. Saha, A study on the synthesis of
alkaline copper(III) periodate (DPC) complex with an overview of its redox
behavior in aqueous micellar media, Res. Chem. Intermed. 45 (2019) 789-800.
[80] M. Napoli, C. Saturnino, E.I. Cianciulli, M. Varcamonti, A. Zanfardino, G.
Tommonaro, P. Longo, Silver(I) N-heterocyclic carbene complexes: Synthesis,
characterization and antibacterial activity, J. Organomet. Chem. 725 (2013)
46−53.
[81] P. de Frémont, N.M. Scott, E.D. Stevens, T. Ramnial, O.C. Lightbody, C.L.B.
Macdonald, J.A.C. Clyburne, C.D. Abernethy, S.P. Nolan, Synthesis of well-