Photochemistry and Photobiology, 2013, 89 441
24. Niedre, M., M. S. Patterson and B. C. Wilson (2002) Direct near-
infrared luminescence detection of singlet oxygen generated by pho-
todynamic therapy in cells in vitro and tissues in vivo. Photochem.
Photobiol. 754, 382–391.
25. Ames, B. N., R. Cathcart, E. Schwiers and P. Hochsteint (1981) Uric
acid provides an antioxidant defense in humans against oxidant- and
radical-caused aging and cancer, A hypothesis. Proc. Natl Acad. Sci.
USA 78, 6858–6862.
26. Dunlap, W. C., Y. Yamamoto, M. Inoue, M. Kashiba-Iwatsuki, M.
Yamaguchi and K. Tomita (1998) Uric acid photo-oxidation assay,
in vitro comparison of sunscreening agents. Int. J. Cosmetic Sci. 20,
1–18.
27. Cavalcante, R. S., H. Imasato, V. S. Bagnato and J. R. Perussi
(2009) A combination of techniques to evaluate photodynamic effi-
ciency of photosensitizers. Laser Phys. Lett. 6, 64–70.
activation pattern induced by extracellular and intracellular singlet
oxygen and UVA. Eur. J. Biochem. 260, 917–922.
44. Soh, N. (2006) Recent advances in fluorescent probes for the
detection of reactive oxygen species. Anal. Bioanal. Chem. 386,
532–543.
45. Fischer, F., G. Graschew, H.-J. Sinn, W. Maier-Borst, W. J. Lorenz
and P. M. Schlag (1998) A chemical dosimeter for the determination
of the photodynamic activity of photosensitizers. Clin. Chim. Acta
274, 89–104.
46. Mosinger, J., M. Deumié, K. Lang, P. Kubát and D. M. Wagnerová
(2000) Supramolecular sensitizer: Complexation of meso-tetrakis
(4-sulfonatophenyl) porphyrin with 2-hydroxypropyl-cyclodextrins.
J. Photochem. Photobiol. A: Chem. 130, 13–20.
47. Bourdelande, J. L., J. Fonta, G. Marques, A. A. Abdel-Shafi, F. Wil-
kinson and D. R. Worrall (2001) On the efficiency of the photosensi-
28. Flors, C., M. J. Fryer, J. Waring, B. Reeder, U. Betchold, P. M.
Mullineaux, S. Nonell, M. T. Wilson and N. R. Baker (2006) Imag-
ing the production of singlet oxygen in vivo using a new fluorescent
sensor, singlet oxygen sensor green. J. Exp. Bot. 57, 1725–1734.
29. Lavi, A., H. Weiman, R. T. Holmes, K. M. Smith and B. Ehrenberg
(2002) The depth of porphyrin in a membrane and the membrane’s
physical properties affect the photosensitizing efficiency. Biophys. J .
82, 2101–2110.
30. Butler, J., G. G. Jayson and A. J. Swallow (1975) The reaction
between the superoxide anion radical and cytochrome c. Biochim.
Biophys. Acta 408, 215–222.
31. Rota, C., C. F. Chignell and R. P. Mason (1999) Evidence for free
radical formation during the oxidation of 2′-7′-dichlorofluorescin to
the fluorescent dye 2′-7′-dichlorofluorescein by horseradish peroxi-
dase, possible implications for oxidative stress measurements. Free
Radical Biol. Med. 27, 873–881.
32. Omata, T. and N. A. Murata (1980) Rapid and efficient method to
prepare chlorophyll a and b from leaves. Photochem. Photobiol. 31,
183–185.
33. Olivier, D., S. Douillard, I. Lhommeau, E. Bigot and T. Patrice
(2009) Secondary oxidants in human serum exposed to singlet oxy-
gen: The influence of hemolysis. Photochem. Photobiol. Sci. 8,
1476–1486.
tized production of singlet oxygen in water suspensions of a
trisbipyridy(l) ruthenium(II) complex covalently bound to an insolu-
ble hydrophilic polymer. J. Photochem. Photobiol. A: Chem. 138,
65–68.
48. Clennan, E. L., L. J. Noe, E. Szneler and T. Wen (1990) Hydrazine:
New charge-transfer physical quenchers of singlet oxygen. J. Am.
Chem. Soc. 112, 5080–5085.
49. Alfano, A. J., M. S. Showell and F. K. Fong (1985) Triplet-state
decay kinetics of hydrated chlorophyll complexes. J. Chem. Phys.
82, 765–772.
50. Hasty, N., P. B. Merkel, P. Radlick and D. R. Kearns (1972) Role
of azide in singlet oxygen reactions: Reaction of azide with singlet
oxygen. Tetrahedron Lett. 1, 49–52.
51. Yamakoshi, Y., N. Umezawa, A. Ryu, K. Arakane, N. Miyata, Y.
Goda, T. Masumizu and T. Nagano (2003) Active oxygen species
generated from photoexcited fullerene (C60) as potential medicines:
O2 versus 1O2. J. Am. Chem. Soc. 125, 12803–12809.
ꢀ•
52. Gorman, A. A. and M. A. J. Rodgers (1992) Current perspectives of
singlet oxygen detection in biological environments. J. Photochem.
Photobiol. B: Biol. 14, 159–176.
53. Keston, A. S. and R. Brandt (1965) The fluorimetric analysis
of ultramicro quantities of hydrogen peroxide. Anal. Biochem. 11,
1–5.
34. Ammann, E. C. B. and V. H. Lynch (1966) Purine metabolism by
unicellular algae III. The photochemical degradation of uric acid by
chlorophyll. Biochim. Biophys. Acta 120, 181–182.
35. Spikes, J. D. (1975) Porphyrins and related compounds as photody-
namic sensitizers. Ann. N. Y. Acad. Sci. 244, 496–508.
36. Montaña, M. P., W. A. Massad, F. Amat-Guerri and N. A. García
(2008) Scavenging of riboflavin-photogenerated oxidative species by
uric acid, xanthine or hypoxanthine, A kinetic study. J. Photochem.
Photobiol. A: Chem. 193, 103–109.
37. Ragas, X., A. Jimenez-Banzo, D. Sanchez-Garcia, X. Batllori and S.
Nonell (2009) Singlet oxygen photosensitisation by the fluorescent
probe singlet oxygen sensor green. Chem. Commun. 2920–2922.
38. Tanaka, K., T. Miura, N. Umezawa, Y. Urano, K. Kikuchi, T. Higu-
chi and T. Nagano (2001) Rational design of fluorescein-based fluo-
54. Hadjur, C. and P. Jardon (1995) Quantitative analysis of superoxide
anion radicals photosensitized by hypericin in a model membrane
using the cytochrome c reduction method. J. Photochem. Photobiol.
B: Biol. 29, 147–156.
55. Bazin, M., F. Bosca, M. L. Marin, M. A. Miranda, L. K. Patterson
and R. Santus (2000) A laser flash photolysis and pulse radiolysis
study of primary photochemical processes of flumequine. Photo-
chem. Photobiol. 72, 451–457.
56. Yash, P. M. (1968) Conformation of cytochromes. III. Effect of urea,
temperature, extrinsic ligands, and pH variation on the conformation
of horse heart ferricytochrome c. Biochemistry 7, 765–776.
57. Greenwood, C. and G. Palmer (1965) Evidence for the existence of
two functionally distinct forms of cytochrome c monomer at alkaline
pH. J. Biol. Chem. 240, 3660–3663.
rescence probes. Mechanism-based design of
fluorescence probe for singlet oxygen. J. Am. Chem. Soc. 123,
2530–2536.
a
maximum
58. Simic, M. G., I. A. Taub, J. Tocci and P. A. Hurwitz (1975) Free
radical reduction of ferricytochrome-c. Biochem. Biophys. Res. Com-
mun. 62, 161–167.
39. Davies, M. J. (2003) Singlet oxygen-mediated damage to proteins
and its consequences. Biochem. Biophys. Res. Commun. 305, 761–
770.
59. Koppenol, W. H., K. J. H. Van Buuren, J. Butler and R. Braams
(1976) The kinetics of the reduction of cytochrome c by the superox-
ide anion radical, Biochim. Biophys. Acta 449, 157–168.
60. Bazin, M., L. K. Patterson, J. C. Ronfard-Haret and R. Santus
(1988) Superoxide dismutase as an amplifier of the chemical
reactivity of porphyrin radical-cations. Photochem. Photobiol. 48,
177–180.
40. Lee, H.-Y., S. Chen, M.-H. Zhang and T. Shen (2003) Studies on
the synthesis of two hydrophilic hypocrellin derivatives with
enhanced absorption in the red spectral region and on their photo-
.
ꢀ
generation of O2
and O21Dg. J. Photochem. Photobiol. B: Biol.
71, 43–50.
61. Tavares, A., S. R. S. Dias, C. M. B. Carvalho, M. A. F. Faustino, J.
P. C. Tomè, M. G. P. M. Neves, A. C. Tomè, J. A. S. Cavaleiro, A.
Cunha, N. C. M. Gomes, E. Alves and A. Alemida (2011) Mecha-
nisms of photodynamic inactivation of a Gram-negative recombinant
bioluminescent bacterium by cationic porphyrins. Photochem. Photo-
biol. Sci. 10, 1659–1669.
62. Li, M. Y., C. S. Cline, E. B. Koker, H. H. Carmichael, C. F. Chig-
nell and P. Bilski (2001) Quenching of singlet molecular oxygen
(1O2) by azide anion in solvent misture. Photochem. Photobiol. 74,
760–764.
41. Slaventinska, L., J. Mosinger and P. Kubat (2008) Supramolecular
carriers of singlet oxygen, photosensitized formation and thermal
decomposition of endoperoxides in the presence of cyclodextrins.
J. Photochem. Photobiol. A: Chem. 195, 1–9.
42. Gottfried, V., D. Peled, J. W. Winkelman and S. Kimel (1988)
Photosensitizers in organized media, singlet oxygen production and
spectral properties. Photochem. Photobiol. 48, 157–163.
43. Klotz, L.-O., C. Pellieux, K. Briviba, C. Pierlot, J.-M. Aubry and H.
Sies (1999) Mitogen-activated protein kinase p38-, JNK-, ERK-)