4
Tetrahedron
a
a
a
a
maintained high activity in the model reaction even when 0.01
17
q
r
s
4-EtO C-C H
4
Ph
Ph
n-Bu
2
4
3
3
2
98
99
96
96
2
6
mol% of the [Cu]/L catalytic system was used.
18
4-NO -C H
2
6
4
In experiments using a higher concentration of benzyl azide (1
1
1
19
20
4-NO
2
-C
6
H
4
M) and 1.05 equivalents of phenylacetylene full conversion of
the azide was reached in less than 15 minutes for both ligands
Tz Ox and Tz Ox (1 mol% [Cu]/L).
2 2
t
4-NO -C H
4
CH OH
2
6
β
β
a
b
Product isolation procedures: crystallization from the reaction mixture;
c
Thus, replacement of one or two triazolyl fragments in TBTA
with oxime groups resulted in significant synergistic
enhancement of ligand activity in the CuAAC reaction.
column chromatography; aqueous work-up with ethyl acetate (for details,
see ESI).
Readily available ligand Tz Ox
2
was chosen for substrate
12
Notably, rapid conversions and high product yields were
achieved using stoichiometric amounts of azide and alkyne.
Thus, an excess of one of the reactants, typical for other CuAAC
scope studies, utilizing various azides and alkynes and
employing 1 mol% CuSO , 1 mol% Tz Ox and 4 mol% of
4 2
sodium ascorbate as the catalytic system (Table 2). Almost all
substrates provided nearly quantitative isolated yields of triazoles
catalytic systems was not needed, demonstrating the high
potential of Tz Ox
2
for large-scale ligand-accelerated CuAAC
1
with full conversion achieved in relatively short reaction
processes.
periods (typically, 2-4 h, Table 2).
In summary, the oxime group may be considered as an
efficient binding motif for the design of ligands to accelerate the
CuAAC reaction. A series of new highly active N3 and N4 type
ligands containing -oximinolalkyl arms were introduced.
Replacement of one or two triazolylmethyl “arms” of the
commonly employed ligand tris(benzyltriazolyl)amine (TBTA)
with oximinoalkyl fragments led to a synergistic enhancement of
activity in ligand-accelerated CuAAC reactions. The best
oximinoalkylamine ligands are easily available via a modular
Table 2
Substrate scope of CuAAC reaction employing Tz Ox
ligand
2
as the
10
approach.
Acknowledgments
This work was supported by Russian Science Foundation
(
Yield
1
2
Time
h)
Entry
1
R
R
(
%)
(
References and notes
a
1
2
3
4
5
6
a
b
c
d
e
f
Bn
Bn
Bn
Bn
Bn
Bn
Ph
3
2
4
4
2
2
99
97
97
94
99
97
1
.
a) Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B.
Angew. Chem., Int. Ed. 2002, 41, 2596–2599; b) Tornøe, C.W.;
Christensen, C.; Meldal, M. J. Org. Chem. 2002, 67, 3057–3064.
For reviews see: a) Meldal, M.; Tornøe, C. W. Chem. Rev. 2008,
b
b
c
c
a
CH OH
2
2.
(CH ) OH
2 2
1
2
08, 2952–3015; b) Hein, J. E.; Fokin, V. V. Chem. Soc. Rev.,
010, 39, 1302–1315; c) Bock, V. D.; Hiemstra, H.; van
(CH ) OH
2
4
Maarseveen, J. H. Eur. J. Org. Chem. 2006, 51–68; d) Hänni, K.
D.; Leigh, D. A. Chem. Soc. Rev. 2010, 39, 1240–1251; e) Kappe,
C. O.; Van der Eycken, E. Chem. Soc. Rev. 2010, 39, 1280–1290;
f) Liang, L.; Astruc, D. Coord. Chem. Rev. 2011, 255, 2933–2945;
g) Sharpless, K. B.; Manetsch, R. Expert Opin. Drug Discov.
CO Me
2
2
006, 1, 6, 525–538; h) Hassan, S.; Müller, T. J. J. Adv. Synth.
Catal. 2015, 357, 617–666; i) Ananikov, V. P.; Khokhlova, E. A.;
Egorov, M. P.; Sakharov, A. M.; Zlotin, S. G.; Kucherov, A. V.;
Kustov, L. M.; Gening, M. L.; Nifantiev, N. E. Mendeleev
Commun. 2015, 25, 75–82.
b
7
g
Bn
Bn
8
99
3
.
a) For a recent review see: Diez-Gonzalez, S. Curr. Org. Chem.
2
014, 15, 2830–2845; b) Chan, T. R.; Hilgraf, R.; Sharpless, K.
b
b
8
9
h
i
6
6
99
97
B.; Fokin V. V. Org. Lett. 2004, 6, 2853–2855; c) Rodionov, V.
O.; Presolski, S. I.; Gardinier, S.; Lim, Y.-H.; Finn, M. G. J. Am.
Chem. Soc. 2007, 129, 12696–12704; d) Presolski, S. I.; Hong, V.;
Cho, S.-H.; Finn, M. G. J. Am. Chem. Soc. 2010, 132, 14570–
Ph
1
4576; e) Lewis, W. G.; Magallon, F. G.; Fokin, V. V.; Finn, M.
G. J. Am. Chem. Soc. 2004, 126, 9152–9153; f) Campbell-
Verduyn, L. S.; Mirfeizi, L.; Dierckx, R. A.; Elsinga, P. H.;
Feringa, B. L. Chem. Commun. 2009, 2139–2141; g) Barré, G.;
Taton, D.; Lastécouères, D.; Vincent, J.-M. J. Am. Chem. Soc.
2004, 126, 7764–7765; h) Candelon, N.; Lastécouères, D.; Diallo,
A. K.; Aranzaes, J. R.; Astruc, D.; Vincent, J.-M. Chem. Commun.
b
b
b
1
1
1
0
1
2
j
n-C H
Ph
Ph
Ph
2
3
2
96
99
95
7
15
k
l
2 2
CH CO Et
2
008, 741–743; i) Özçubukçu, S.; Ozkal, E.; Jimeno, C.; Pericàs,
a
a
a
a
1
1
1
1
3
4
5
6
m Ph
Ph
6
1
2
6
96
98
97
96
M. A. Org. Lett. 2009, 11, 4680–4683; j) Baron, A.; Blériot, Y.;
Sollogoub, M.; Vauzeilles, B. Org. Biomol. Chem. 2008, 6, 1898–
1901; k) Li, F.; Hor, T. S. A. Chem.-Eur. J. 2009, 15, 10585–
n
o
p
Ph
CO Me
2
1
0592; l) Rudolf, G. C.; Sieber S. A. ChemBioChem 2013, 14,
4-Me-C H
6
4
Ph
2447–2455; m) Tanaka, K.; Kageyama, C.; Fukase, K.
Tetrahedron Lett. 2007, 48, 6475–6479; n) Ozkal, E. ; Llanes, P.;
4-MeO-C H
6
4
Ph