5914
A. Sani Souna Sido et al. / Tetrahedron Letters 48 (2007) 5911–5914
of 1a. In cyclohexane, this product was now formed in
almost 30% in the reaction of 1a, but still in low amount
with 1b (entries 2 and 6).
Bioorg. Med. Chem. 2005, 13, 6588; Dai, J.; Krohn, K.;
Fl o¨ rke, U.; Draeger, S.; Schulz, B.; Kiss-Szikszai, A.;
Antus, S.; Kurtan, T.; van Ree, T. Eur. J. Org. Chem.
2
006, 35, 3498; Das, U.; Gul, H. I.; Alcorn, J.; Shrivastav,
A.; George, T.; Sharma, R. K.; Nienaber, K. H.; De
Clercq, E.; Balzarini, J.; Kawase, M.; Kan, N.; Tanaka,
T.; Tani, S.; Werbovetz, K. A.; Yakovich, A. J.; Mana-
vathu, E. K.; Stables, J. P.; Dimmock, J. R. Eur. J. Med.
Chem. 2006, 41, 577; Giner, J.-L.; Kehbein, K. A.; Cook,
J. A.; Smith, M. C.; Vlahos, C. J.; Badwey, J. A. Bioorg.
Med. Chem. Lett. 2006, 16, 2518.
Since branched alkanes should be better hydrogen
donors, we investigated the effect of methylcyclopentane
and 2,3-dimethylpentane. The latter led to a complex
mixture of products where the expected product 4a
was the sole compound isolated, although in low yield
(
entry 4). Fortunately, methylcyclopentane proved to
be the best compromise between reactivity and selectiv-
ity. In this solvent, the reduction was now the major
process with 1a,b (entries 3 and 7), indanone 2b being
barely detectable starting from 1b (entry 7). Not so sur-
prisingly, cyclization was still the major process with the
very reactive 1c (entry 8).
2. For recent examples of pharmaceutically active dihydro-
chalcone derivatives, see Rezk, B. M.; Haenen, G. R. M.
M.; Van Der Vijgh, W. J. F.; Bast, A. Biochem. Biophys.
Res. Commun. 2002, 295, 9; Williams, C. A.; Grayer, R. J.
Nat. Prod. Rep. 2004, 21, 539; Nakatani, N.; Ichimaru,
M.; Moriyasu, M.; Kato, A. Biol. Pharm. Bull. 2005, 28,
8
3.
3
. For liquid superacid-induced intramolecular cyclization of
arylvinylketones, see Suzuki, T.; Ohwada, T.; Shudo, K. J.
Am. Chem. Soc. 1997, 119, 6774.
Therefore, these results showed that regioselective reduc-
tion of enones is also possible in HUSY. They also
revealed that the more branched the alkane is, the
more reduction product would be formed (entry 3 vs
entries 1, 2).
4. For liquid superacid-induced arylation of arylvinyl-
ketones, see Ohwada, T.; Yamagata, N.; Shudo, K. J.
Am. Chem. Soc. 1991, 113, 1364.
5
. For liquid superacid-induced reduction of C,C-double
bond of arylvinylketones, see Coustard, J. M.; Douteau,
M. H.; Jacquesy, J. C.; Jacquesy, R. Tetrahedron Lett.
In summary, we have further expanded the scope of syn-
thetic applications of H-zeolites, demonstrating that
either cyclization or regioselective aryl addition or regio-
selective reduction of arylvinylketones can be achieved
in good yield by zeolite catalysis under the appropriate
conditions.
1
975, 25, 2029.
6
7
. Corma, A. Chem. Rev. 1995, 95, 559–614.
. Koltunov, K. Y.; Walspurger, S.; Sommer, J. Tetrahedron
Lett. 2005, 46, 8391–8394.
8. Olah, G. A.; Klumpp, D. A. Acc. Chem. Res. 2004, 37,
11.
2
It is worthy mentioning the ease to perform such reac-
tions and to recover the products. Moreover, the zeolite
catalyst can be reused three times without significant
decrease in yields.
9. Olah, G. A. Angew. Chem., Int. Ed. Engl. 1993, 32, 767.
0. Nenajdenko, V. G.; Shevchenko, N. E.; Balenkova, E. S.;
Alabugin, I. V. Chem. Rev. 2003, 103, 229–282.
1. Koltunov, K. Y.; Repinskaya, I. B.; Borodkin, G. I. Russ.
J. Org. Chem. 1994, 30, 97; Vasilyev, A.; Walspurger, S.;
Haouas, M.; Pale, P.; Sommer, J.; Rudenko, A. P. Org.
Bio. Chem. 2004, 2, 3483–3489; Vasilyev, A.; Walspurger,
S.; Sommer, J.; Pale, P. Tetrahedron 2005, 61, 3559–
1
1
Therefore, zeolites appear as green alternatives to con-
ventional Br o¨ nsted acids and superacids.
3
564.
Further works are now in progress to further explore the
scope of these reactions and to apply them in organic
synthesis.
12. Farneth, W. E.; Gorte, R. J. Chem. Rev. 1995, 95, 615–
635; Gorte, R. J. Catal. Lett. 1999, 62, 1–13.
13. Umansky, B. S.; Hall, K. J. Catal. 1990, 124, 97–108;
Umansky, B. S.; Engelhardt, J.; Hall, K. J. Catal. 1991,
1
27, 128–140.
1
1
4. For a recent method of determination of Br o¨ nsted acid
sites on zeolites, see Louis, B.; Walspurger, S.; Sommer, J.
Catal. Lett. 2004, 93, 81.
Acknowledgments
K.S.-S.-S., S.C., and M.K. thank the Loker Hydrocar-
bon Institute, USC, Los-Angeles, for financial support.
P.P. and J.S. thank the ‘CNRS’ and the French Ministry
of Research for financial support.
5. Characteristics of HUSY-zeolite: source: Zeolyst Interna-
˚
tional (CBV 500), topology: cage, pore diameter (A):
7
.4 · 7.4, Si/Al ratio: 2.8.
Typical procedure: Zeolite USY (SiO /Al O = 5.64, CBV
5
2
2
3
þ
00, Zeolyst International) in NH4 form was activated at
5
50 ꢁC for 4 h under air. The number of acid sites was
References and notes
estimated to be 4.33 mmol/g.
Synthesis of 2c (Table 2, entry 9): Activated zeolite
(2.52 g, 10.92 mmol sites), chlorobenzene (10 mL), and
compound 1c (454 mg, 2.18 mmol) were successively
loaded in 20 mL pressure tube. The resulting suspension
was magnetically stirred at 130 ꢁC overnight. After cool-
ing, the mixture was added to 50 mL of MeOH, then
stirred at 80 ꢁC for 5 h. After cooling, the catalyst was
filtered off and the organic phase was concentrated to
provide the crude product (434 mg). A chromatographic
purification (silica gel, pentane/ethyl acetate 9:1) gave pure
2c (387 mg, 85%).
1
. For recent examples of pharmaceutically active indanone
derivatives, see Ernst-Russell, M. A.; Chai, C. L. L.;
Wardlaw, J. H.; Elix, J. A. J. Nat. Prod. 2000, 63, 129;
Anderson, E. A.; Alexanian, E. J.; Sorensen, E. J. Angew.
Chem., Int. Ed. 2004, 43, 1998; Ito, T.; Tanaka, T.;
Iinuma, M.; Nakaya, K.-i.; Tanakashi, Y.; Sawa, R.;
Murata, J.; Darnaedi, D. J. Nat. Prod. 2004, 67, 932;
Alonso, D.; Dorronsoro, I.; Rubio, L.; Munoz, P.; Garcia-
Palomero, E.; Del Monte, M.; Bidon-Chanal, A.; Orozco,
M.; Luque, F. J.; Castro, A.; Medina, M.; Martinez, A.