344
C. Grison et al. / European Journal of Medicinal Chemistry 39 (2004) 333–344
solvents, the expected derivative 10 was obtained as an oil in
M. Soroka, Synthesis (1982) 219–221; (l) G. Zanotti, H.L. Monaco,
J. Foote, J. Am. Chem. Soc. 106 (1984) 7900–7904; (m) H. Ke,
W.N. Lipscomb, Y. Cho, R.B. Honzatko, J. Mol. Biol. 204 (1988)
725–747; (n) J. Gloede, H. Gross, P. Henklein, H. Niedrich, S. Tan-
neberger, B. Tschiersch, Pharmazie 43 (1988) 434; (o) P. Henklein,
J.Z. Gloede, Z. Chem. 29 (1) (1989) 19–520; (p) A.D. Morris,
A.A. Cordi, Synth. Commun. 27 (1997) 1259–1266.
1
7
9% yield: IR (KBr) m 1742; H-NMR (CDCl ) d 1.34 (t, 6H,
3
3
JHP = 7 Hz, CH ), 3.71 (s, 3H, OCH ), 4.15–4.25 (m, 4H,
3
3
31
CH ), 6.90 (br s, 1H, NH); P-NMR (CDCl ) d 4.0 (s, 1P);
2
3
13
3
C-NMR (CDCl ) d 15.9 (d, J = 7 Hz, CH ), 52.8 (s,
3
2
CP
3
2
OCH ), 63.7 (d, J = 5 Hz, CH ), 154.6 (d, J = 5 Hz,
3
CP
2
CP
[5] (a) E.A. Swyryd, S.S. Seaver, G.R. Stark, J. Biol. Chem. 246 (1974)
6945–6950; (b) R.K. Johnson, T. Inouye, A. Goldin, G.R. Stark,
Cancer Res 36 (1976) 2720–2725.
COO).
[
6] (a) T.D. Kempe, E.A. Swyryd, M. Bruits, G.R. Stark, Cell 9 (1976)
41–550; (b) H.N. Jayaram, D.A. Cooney, D.T. Vistica, S. Kariya,
5
.1.6.3. Methoxycarbonylamidophosphonic acid disodium
5
salt 4b. Compound 4b was obtained according to the proce-
dure described for derivative 4a starting from bromotrimeth-
ylsilane (9.25 g, 60.4 mmol) and compound 10 (1.50 g,
R.K. Jonhson, Cancer Treat. Rep. 63 (8) (1979) 1291–1302; (c)
T.W. Kensler, G. Mutter, J.G. Hankerson, L.J. Reck, C. Harley,
N. Han, B. Ardalan, R.L. Cysyk, R.K. Johnson, H.N. Jayaram,
D.A. Cooney, Cancer Res 41 (1981) 894–904; (d) J.C. White,
L.H. Hines, Cancer Res 44 (1984) 507–513; (e) J.L. Grem, S.A. King,
P.J. O’Dwyer, B. Leyland-Jones, Cancer Res 48 (1988) 4441–4454;
(f) A. Sharma, N.L. Straubinger, R.M. Straubinger, Pharm. Res. 10
7.1 mmol). Reaction mixture was stirred for 56 h at room
temperature. Work-up was carried out a solution 1 M MeONa
in MeOH (60.6 ml). The crude compound was washed suc-
cessively with CH Cl , AcOEt and Et O, and filtered. Then
trituration in a mixture MeOH/Me CO afforded the expected
compound 4b as a white solid in 50% yield: (KBr) m 1618,
(
1993) 1434–1441.
7] (a) G.M. Wahl, R.A. Padgett, G.R. Stark, J. Biol. Chem. 254 (1979)
679–8689; (b) E. Giulotto, I. Saito, G. Stark, EMBO J. 5 (1986)
2115–2121.
2
2
2
[
2
8
1
31
1
638; H-NMR (D O) d 4.98 (s, 3H, OCH ); P-NMR
[8] (a) M.F. Roberts, S.J. Opella, M.H. Schaffer, H.M. Philipps,
G.R. Stark, J. Mol. Biol. 251 (19) (1976) 5976–5985; (b) J.J. Good-
son, C.J. Wharton, R.J. Wrigglesworth, J. Chem. Soc. Perkin Trans. 1
2
3
1
3
(D O) d 9.3 (s, 1P); C-NMR (D O) d 51.8 (s, OCH ), 184.0
2
2
3
(s, COO).
(
1980) 2721–2727; (c) P. Kafarski, B. Lejczak, P. Mastalerz, D. Dus,
C. Radzikowski, J. Med. Chem. 28 (1985) 1555–1558; (d) G.K. Far-
rington, A. Kumar, F.C. Wedler, J. Med. Chem. 28 (1985) 1668–1673;
5
5
.2. Enzymology
(
5
e) S.D. Lindell, R.M. Turner, Tetrahedron Lett. 31 (1990) 5381–
384; (f) N. Laing, W.W.C. Chan, D.W. Hutchison, B. Oberg, Bio-
.2.1. ATCase preparation and assay
chemistry 260 (2) (1990) 206–208; (g) M. Ben-Bari, G. Dewynter,
C. Aymard, T. Jei, J.L. Montero, Phosphorus Sulfur Silicon 105
(1995) 129–144; (h) P. Coutrot, P. Oliger, C. Grison, S. Joliez, New J.
Chem. 23 (1999) 981–987; (i) P. Oliger, M. Hebrant, C. Grison,
P. Coutrot, C. Tondre, Langmuir 17 (2001) 6426–6432; (j) P. Oliger,
M. Schmutz, M. Hebrant, C. Grison, P. Coutrot, C. Tondre, Langmuir
17 (2001) 3893–3897.
described [21] and the isolated catalytic subunits were pre-
pared by the method of Gerhart and Holoubek [22]. The
enzymatic assay was performed at 37 °C, in the presence of
5
2
0 mM Tris–HCl pH = 8, 5 mM carbamylphosphate and
0 mM aspartate, or otherwise indicated.
[
9] (a) C. Purcarea, G. Hervé, M. Ladjimi, R. Cunin, J. Bact. 179 (1997)
4
143–4157; (b) M. Nagy, M. Le Gouar, S. Potier, J.L. Souciet,
G. Hervé, J. Biol. Chem. 264 (1989) 8366–8374; (c) J.P. Simmer,
R.E. Kelly, J.L. Scully, D.R. Grayson, D.R. Rinker, A.G. Bergh,
D.E. Evans, Proc. Natl. Acad. Sci. USA 86 (1989) 4382–4389; (d)
L. Jin, B. Stec, W.N. Lipscomb, E.R. Kantrowitz, Proteins 37 (1999)
References
[
1] (a) T.W. Kensler, D.A. Cooney, Adv. Pharmacol. Chemother 18
1981) 273–352; (b) G. Hervé, in: G. Hervé (Ed.), Allosteric
7
29–742; (e) J.A. Endrizzi, P.T. Beerninck, T. Alber,
(
H.K. Schachman, Proc. Natl. Acad. Sci. USA 97 (2000) 5077–5082;
Enzymes, C.R.C., Boca Raton, 1989, pp. 61–79; (c) M. Le Maire,
R. Chabaud, G. Hervé, Un modèle d’étude: l’aspartate transcarbamy-
lase, Collection de Biochimie, Masson, 1990; (d) W.N. Lipscomb,
Adv. Enzymol 68 (1994) 67–152.
(
(
f) S. Van Boxstael, R. Cunin, S. Khan, D. Maes, J. Mol. Biol. 326
2003) 203–216.
[
[
[
[
10] P. Coutrot, C. Grison, C. Charbonnier-Gérardin, Tetrahedron 48
1992) 9841–9868.
(
[2] (a) S. Madani, J. Baillon, J. Fries, O. Belhadj, A. Bettaieb, M. Ben
Hamida, G. Hervé, Eur. J. Cancer Clin. Oncol. 23 (1987) 1485–1490;
11] G.M. Blackburn, D. Brown, S.J. Martin, M.J. Paratt, J. Chem. Soc.
Perkin Trans. 1 (1987) 181–186.
12] P. Coutrot, C. Grison, R. Sauvêtre, J. Organomet. Chem. 332 (1987)
(
b) G. Hervé, X.G. Xi, in: P. Sebastien (Ed.), “Mécanismes des
pneumopathies professionnelles”, vol. 203, Editions de l’INSERM,
991, pp. 195–201.
3] (a) N. Laing, W.W. Chan, D.W. Hutchinson, B. Oberg, FEBS Lett 260
1990) 206–208; (b) P.L. Dutta, W.O. Foye, J. Pharm. Sci. 79 (1990)
47–452.
4] (a) K.D. Collins, G.R. Stark, J. Biol. Chem. 246 (1971) 6599–6605;
b) E.A. Swyryd, S.S. Seaver, G.R. Stark, J. Biol. Chem. 246 (1974)
945–6950; (c) R.K. Johnson, T. Inouye, A. Goldin, G.R. Stark,
1
–8.
1
13] G.M. Blackburn, D. Brown, S.J. Martin, J. Chem. Res. (S) (1985)
92–93.
[14] (a) C.E. McKenna, M.T. Higa, N.H. Cheung, M.C. McKenna, Tetra-
hedron Lett 2 (1977) 155–158; (b) C.E. McKenna, J. Schmidhauser, J.
Chem. Soc. Chem. Commun. (1979) 739.
[
[
(
4
(
6
[15] C. Grison, F. Charbonnier, P. Coutrot, Tetrahedron Lett 35 (1994)
5425–5428.
Cancer Res 36 (1976) 2720–2725; (d) K.K. Tsuboi, H.N. Edmunds,
L.K. Kwong, Cancer Res 37 (1977) 3080–3087; (e) R.K. Johnson,
E.A. Swyryd, G.R. Stark, Cancer Res 38 (1978) 371–378; (f)
H.N. Jayaram, D.A. Cooney, Cancer Treat. Rep. 63 (1979) 1095–
[16] J.I.G. Cadogan, Organophosphorus Reagents in Organic Synthesis,
Academic Press Inc., London, 1979 (and references cited therein).
[17] L.A.Antokhina, Z.Y. Latypov, K.V. Nirondrov, Zh. Obshch. Khim. 53
(1983) 1258–1260.
1
(
108; (g) D. Magnuson, J. Kuhn, Drugs Future 6 (1981) 1259–1266;
h) B. Ardalan, R.I. Glazer, T.W. Kensler, H.N. Jayaram, T.V. Pham,
J.S. MacDonald, D.A. Cooney, Biochem. Pharm. 30 (1981) 2045–
049; (i) B.B. Natale, A. Yagoda, D.P. Kelsen, R.J. Gralla, R.C. Wat-
[18] A.V. Kirsanov, M.S. Marenets, Zh. Obshch. Khim. 29 (1959) 2256.
[19] W.L.F. Armagero, D.D. Perrin, In Purification of Laboratory Chemi-
cals, fourth ed, Butterworth-Heinemann, 1998.
[20] S.C. Watson, J.F. Eastham, J. Organomet. Chem. 9 (1967) 165–168.
[21] B. Perbal, G. Hervé, J. Mol. Biol. 70 (1972) 511–529.
[22] J.C. Gerhart, H. Holoubek, J. Biol. Chem. 242 (1967) 2886–2892.
2
son, Cancer Treat. Rep. 66 (1982) 2091; (j) J.L. Montero, J.L. Imbach,
Eur. J. Med. Chem. Chim. Ther. 17 (1982) 97–2099; (k) P. Kafarski,