RSC Advances
Paper
11 Y. Wang, Y. Tashiro and K. Sonomoto, Fermentative 27 S. Zhang, F. Jin, J. Hu and Z. Huo, Improvement of lactic acid
production of lactic acid from renewable materials: recent
achievements, prospects, and limits, J. Biosci. Bioeng.,
2015, 119, 10–18.
production from cellulose with the addition of Zn/Ni/C
under alkaline hydrothermal conditions, Bioresour.
Technol., 2011, 102, 1998–2003.
12 G.-X. Qi, L. Xiong, C. Huang, X.-F. Chen, X.-Q. Lin and 28 Y. Wang, W. Deng, B. Wang, Q. Zhang, X. Wan, Z. Tang,
X.-D. Chen, Solvents Production from a Mixture of Glucose
and Xylose by Mixed Fermentation of Clostridium
Acetobutylicum and Saccharomyces Cerevisiae, Appl.
Biochem. Biotechnol., 2015, 177, 996–1002.
Y. Wang, C. Zhu, Z. Cao and G. Wang, Chemical synthesis
of lactic acid from cellulose catalysed by lead(II) ions in
water, Nat. Commun., 2013, 4, 2141.
29 K. Nemoto, Y. Hirano, K.-i. Hirata, T. Takahashi, H. Tsuneki,
K.-i. Tominaga and K. Sato, Cooperative In–Sn catalyst
system for efficient methyl lactate synthesis from biomass-
derived sugars, Appl. Catal., B, 2016, 183, 8–17.
13 B. P. Calabia, Y. Tokiwa and S. Aiba, Fermentative
production of l-(+)-lactic acid by an alkaliphilic marine
microorganism, Biotechnol. Lett., 2011, 33, 1429–1433.
´
14 Y.-J. Wee, J.-S. Yun, D. Kim and H.-W. Ryu, Batch and 30 M. S. Holm, Y. J. Pagan-Torres, S. Saravanamurugan,
repeated batch production of
enterococcus faecalis RKY1 using wood hydrolyzate and
corn steep liquor, J. Ind. Microbiol. Biotechnol., 2006, 33, 431.
L
(+)-lactic acid by
A. Riisager, J. A. Dumesic and E. Taarning, Sn-beta
catalysed conversion of hemicellulosic sugars, Green
Chem., 2012, 14, 702–706.
´
15 R. P. John, G. Anisha, K. M. Nampoothiri and A. Pandey, 31 S. Tolborg, I. Sadaba, C. M. Osmundsen, P. Fristrup,
Direct lactic acid fermentation: focus on simultaneous
saccharication and lactic acid production, Biotechnol.
Adv., 2009, 27, 145–152.
M. S. Holm and E. Taarning, Tin-containing Silicates:
Alkali Salts Improve Methyl Lactate Yield from Sugars,
ChemSusChem, 2015, 8, 613–617.
´
´
16 Y. Hayashi and Y. Sasaki, Tin-catalyzed conversion of trioses 32 B. Murillo, A. Sanchez, V. Sebastian, C. Casado-Coterillo,
´
´
to alkyl lactates in alcohol solution, Chem. Commun., 2005,
2716–2718.
O. de la Iglesia, M. P. Lopez-Ram-de-Viu, C. Tellez and
J. Coronas, Conversion of glucose to lactic acid derivatives
17 A. Onda, T. Ochi, K. Kajiyoshi and K. Yanagisawa, A new
chemical process for catalytic conversion of D-glucose into
lactic acid and gluconic acid, Appl. Catal., A, 2008, 343, 49–54.
with
mesoporous
Sn-MCM-41
and
microporous
titanosilicates, J. Chem. Technol. Biotechnol., 2014, 89,
1344–1350.
´
18 Z. Huo, Y. Fang, D. Ren, S. Zhang, G. Yao, X. Zeng and F. Jin, 33 B. Murillo, B. Zornoza, O. de la Iglesia, C. Tellez and
Selective conversion of glucose into lactic acid with
transition metal ions in diluted aqueous NaOH solution,
ACS Sustainable Chem. Eng., 2014, 2, 2765–2771.
J. Coronas, Chemocatalysis of sugars to produce lactic acid
derivatives on zeolitic imidazolate frameworks, J. Catal.,
2016, 334, 60–67.
19 X. Yan, F. Jin, K. Tohji, A. Kishita and H. Enomoto, 34 F. Chambon, F. Rataboul, C. Pinel, A. Cabiac, E. Guillon and
Hydrothermal conversion of carbohydrate biomass to lactic
acid, AIChE J., 2010, 56, 2727–2733.
N. Essayem, Cellulose hydrothermal conversion promoted
by heterogeneous Brønsted and Lewis acids: remarkable
efficiency of solid Lewis acids to produce lactic acid, Appl.
Catal., B, 2011, 105, 171–181.
´
´
´
´
20 C. A. Ramırez-Lopez, J. R. Ochoa-Gomez, M. a. Fernandez-
´
´
Santos, O. Gomez-Jimenez-Aberasturi, A. Alonso-Vicario
and J. Torrecilla-Soria, Synthesis of lactic acid by alkaline 35 Y. Wang, F. Jin, M. Sasaki, Wahyudiono, F. Wang, Z. Jing and
hydrothermal conversion of glycerol at high glycerol
concentration, Ind. Eng. Chem. Res., 2010, 49, 6270–6278.
21 Z. Shen, F. Jin, Y. Zhang, B. Wu, A. Kishita, K. Tohji and
M. Goto, Selective conversion of glucose into lactic acid and
acetic acid with copper oxide under hydrothermal
conditions, AIChE J., 2013, 59, 2096–2104.
H. Kishida, Effect of alkaline catalysts on hydrothermal 36 Q. Guo, F. Fan, E. A. Pidko, V. D. G. Wn, Z. Feng, C. Li and
conversion of glycerin into lactic acid, Ind. Eng. Chem. Res.,
2009, 48, 8920–8925.
22 X. Lei, F.-F. Wang, C.-L. Liu, R.-Z. Yang and W.-S. Dong, One-
E. J. Hensen, Highly active and recyclable Sn-MWW zeolite
catalyst for sugar conversion to methyl lactate and lactic
acid, ChemSusChem, 2013, 6, 1352–1356.
pot catalytic conversion of carbohydrate biomass to lactic 37 C. F. De, M. Dusselier, R. R. Van, P. Vanelderen, J. Dijkmans,
acid using an ErCl3 catalyst, Appl. Catal., A, 2014, 482, 78–83.
23 F.-F. Wang, C.-L. Liu and W.-S. Dong, Highly efficient
production of lactic acid from cellulose using lanthanide
triate catalysts, Green Chem., 2013, 15, 2091–2095.
E. Makshina, L. Giebeler, S. Oswald, G. V. Baron and
J. F. Denayer, Fast and selective sugar conversion to alkyl
lactate and lactic acid with bifunctional carbon–silica
catalysts, J. Am. Chem. Soc., 2012, 134, 10089.
24 D. Esposito and M. Antonietti, Chemical conversion of 38 D. Verma, R. Insyani, Y.-W. Suh, S. M. Kim, S. K. Kim and
sugars to lactic acid by alkaline hydrothermal processes,
ChemSusChem, 2013, 6, 989–992.
J. Kim, Direct conversion of cellulose to high-yield methyl
lactate over Ga-doped Zn/H-nanozeolite Y catalysts in
supercritical methanol, Green Chem., 2017, 19, 1969–1982.
´
25 C. Sanchez, L. Serrano, R. Llano-Ponte and J. Labidi, Bread
residues conversion into lactic acid by alkaline 39 M. S. Holm, S. Saravanamurugan and E. Taarning,
hydrothermal treatments, Chem. Eng. J., 2014, 250, 326–330.
Conversion of sugars to lactic acid derivatives using
´
´
´
¨
26 C. Sanchez, I. Egues, A. Garcıa, R. Llano-Ponte and J. Labidi,
heterogeneous zeotype catalysts, Science, 2010, 328, 602–605.
Lactic acid production by alkaline hydrothermal treatment 40 W. Dong, Z. Shen, B. Peng, M. Gu, X. Zhou, B. Xiang and
of corn cobs, Chem. Eng. J., 2012, 181, 655–660.
Y. Zhang, Selective Chemical Conversion of Sugars in
8974 | RSC Adv., 2018, 8, 8965–8975
This journal is © The Royal Society of Chemistry 2018