I. Gandarias et al. / Journal of Catalysis 290 (2012) 79–89
89
1
,2-PDO selectivity was obtained after 24 h indicates that the Ni–
Cu/Al catalytic system is more active in the glycerol hydrogen-
olysis to yield 1,2-PDO than in the 1,2-PDO hydrogenolysis to yield
[2] D.C. Elliott, D. Beckman, A.V. Bridgwater, J.P. Diebold, S.B.S.B. Gevert, Energ.
Fuel 5 (1991) 399.
2 3
O
[
3] D.L. Klass, Biomass for Renewable Energy, Fuels, and Chemicals, Academic
Press, San Diego, 1998.
1
-propanol.
[4] G.W. Huber, R.D. Cortright, J.A. Dumesic, Angew. Chem. Int. Ed. 43 (2004) 1549.
[
5] C. Montassier, J.C. Ménézo, L.C. Hoang, C. Renaud, J. Barbier, J. Mol. Catal. 70
1991) 99.
It is worth to highlight the high glycerol conversion, 90%, and
(
selectivity values, 82%, obtained in a system with in situ generation
of hydrogen. Actually, these results are comparable to the best re-
sults reported under the traditional liquid phase process using
hydrogen pressure (see Table 1). Further research should be
accomplished to determine the effect of the pressure in glycerol
hydrogenolysis through transfer hydrogenation, as less severe con-
ditions can make the process even more attractive. Moreover, the
performance of formic acid as hydrogen donor should be compared
to molecular hydrogen under the same operating conditions.
[
6] S. Sato, M. Akiyama, R. Takahashi, T. Hara, K. Inui, M. Yokota, Appl. Catal. A:
Gen. 347 (2008) 186.
7] S. Wang, H. Liu, Catal. Lett. 117 (2007) 62.
8] T. Miyazawa, Y. Kusunoki, K. Kunimori, K. Tomishige, J. Catal. 240 (2006) 213.
9] E.P. Maris, R.J. Davis, J. Catal. 249 (2007) 328.
[
[
[
[10] D.G. Lahr, B.H. Shanks, Ind. Eng. Chem. Res. 42 (2003) 5467.
11] Y. Kusunoki, T. Miyazawa, K. Kunimori, K. Tomishige, Catal. Commun. 6 (2005)
45.
12] M.A. Dasari, P. Kiatsimkul, W.R. Sutterlin, G.J. Suppes, Appl. Catal. A: Gen. 281
(2005) 225.
13] J. Chaminand, L. Djakovitch, P. Gallezot, P. Marion, C. Pinel, C. Rosier, Green
Chem. 6 (2004) 359.
[
[
[
[
[
6
14] M. Akiyama, S. Sato, R. Takahashi, K. Inui, M. Yokota, Appl. Catal. A: Gen. 371
(
2009) 60.
4
. Conclusions
15] Z. Yuan, L. Wang, J. Wang, S. Xia, P. Chen, Z. Hou, X. Zheng, Appl. Catal. B:
Environ. 101 (2011) 431.
In the present work, the performance of Ni–Cu/Al
2
O
3
bimetallic
[16] A. Wawrzetz, B. Peng, A. Hrabar, A. Jentys, A.A. Lemonidou, J.A. Lercher, J. Catal.
69 (2010) 411.
2
catalysts on the glycerol hydrogenolysis to 1,2-PDO under inert
atmosphere and using formic acid as the source of hydrogen was
studied. It was observed that there is an optimum Cu/Ni ratio
and also an optimum in the ratio and distribution of metal and acid
sites that maximize the yield of 1,2-PDO. The glycerol hydrogenol-
[
[
17] E.S. Vasiliadou, A.A. Lemonidou, Appl. Catal. A: Gen. 396 (2011) 177.
18] R.A.W. Johnstone, A.H. Wilby, I.D. Entwistle, Chem. Rev. 85 (1985) 129.
[19] E. D´ Hont, S. Van de Vyver, B.F. Sels, P.A. Jacobs, Chem. Commun. (2008) 6011.
[
[
20] D. Roy, B. Subramaniam, R.V. Chaudhari, Catal. Today 156 (2010) 31.
21] F. Auneau, S. Noël, G. Aubert, M. Besson, L. Djakovitch, C. Pinel, Catal. Commun.
1
6 (2011) 144.
[22] M.G. Musolino, L.A. Scarpino, F. Mauriello, R. Pietropaolo, Green Chem. 11
2009) 1511.
23] M.G. Musolino, L.A. Scarpino, F. Mauriello, R. Pietropaolo, ChemSusChem 4
2011) 1143.
2 3
ysis occurs when glycerol is adsorbed on an acid site of Al O to
(
form a secondary alkoxide, and when this alkoxide interacts with
an adsorbed hydrogen atom coming from formic acid decomposi-
tion and being activated on a metal site. The optimum balance be-
tween the alumina acid sites and the metal sites was obtained for
the catalyst with a nominal metal content of 35 wt.%. Regarding
the role of the metallic sites, Ni provides comparatively high activ-
ity in the C–C and C–O bond hydrogenolysis, whereas Cu provides
some activity in the C–O bond hydrogenolysis but not in the C–C
bond hydrogenolysis. The formation of a Cu–Ni alloy during the
[
(
[24] T. Miyazawa, S. Koso, K. Kunimori, K. Tomishige, Appl. Catal. A: Gen. 318
(2007) 244.
[
25] I. Gandarias, P.L. Arias, J. Requies, M. El Doukkali, M.B. Güemez, J. Catal. 282
2011) 237.
(
[
26] D.J. Hayes, S. Fitzpatrick, M.H.B. Hayes, J.R.H. Ross, Biorefineries-Industrial
Processes and Products, Wiley-VCH, Weinheim, 2006.
[
[
27] B. Loges, A. Boddien, F. Gaertner, H. Junge, M. Beller, Top. Catal. 53 (2010) 902.
28] A. Boddien, B. Loges, F. Gaertner, C. Torborg, K. Fumino, H. Junge, R. Ludwig, M.
Beller, J. Am. Chem. Soc. 132 (2010) 8924.
reduction of the Ni–Cu/Al
2
O
3
catalysts reduces the active Ni
[29] D.A. Bulushev, J.R.H. Ross, Catal. Today 163 (2011) 42.
[
[
[
30] T. Kim, M. Song, H. Koh, K. Kim, Appl. Catal. A: Gen. 210 (2001) 35.
31] J. Lee, E. Lee, O. Joo, K. Jung, Appl. Catal. A: Gen. 269 (2004) 1.
32] X. Wang, X. Pan, R. Lin, S. Kou, W. Zou, J. Ma, Int. J. Hydrog. Energ. 35 (2010)
4060.
ensemble size. As a result, the activity of the bimetallic catalyst
for C–C bond cleavage is diminished while the activity for C–O
bond cleavage is promoted. The optimum Cu/Ni ratio that maxi-
mized the yield to 1,2-PDO was 0.72.
[
[
33] M. Turco, G. Bagnasco, C. Cammarano, P. Senese, U. Costantino, M. Sisani, Appl.
Catal. B: Environ. 77 (2007) 46.
34] J. Shen, C. Song, Catal. Today 77 (2002) 89.
The kinetic study revealed that the OH groups of glycerol and of
1
,2-PDO competed for the same acid sites to form alkoxides. In or-
[35] F.E. López-Suárez, A. Bueno-López, M.J. Illán-Gómez, Appl. Catal. B: Environ. 84
2008) 651.
36] L. De Rogatis, T. Montini, A. Cognigni, L. Olivi, P. Fornasiero, Catal. Today 145
2009) 176.
[37] V. Ponec, W.M.H. Sachtler, J. Catal. 24 (1972) 250.
(
der to minimize this factor, high catalyst loading was placed in the
reactor, and a glycerol conversion of 90% and a 1,2-PDO selectivity
of 82% were achieved after 24 h operating at 493 K.
[
(
[
[
[
[
38] J.H. Sinfelt, J.L. Carter, D.J.C. Yates, J. Catal. 24 (1972) 283.
39] V. Ponec, Appl. Catal. A: Gen. 222 (2001) 31.
40] B. Coq, F. Figueras, Coord. Chem. Rev. 178–180 (1998) 1753.
41] E. Asedegbega-Nieto, B. Bachiller-Baeza, A. Guerrero-Ruíz, I. Rodríguez-Ramos,
Appl. Catal. A: Gen. 300 (2006) 120.
Acknowledgments
This work was supported by funds from the Spanish Ministry of
Science and Innovation ENE2009-12743-C04-04, and from the Bas-
que Government (Researcher Training Programme of the Depart-
ment of Education, Universities and Research). The authors
greatly acknowledge Drs Schneider, Pohl, Radnik, Mr. Eckelt and
Ms Evert for the work done in the characterization of the catalysts,
and the Inorganic Chemistry Department at the University of Ma-
laga for their technical support.
[
42] V. Ponec, G.C. Bond, Catalysis by Metals and Alloys, Academic Press,
Amsterdam, 1995.
[43] Y. Shinmi, S. Koso, T. Kubota, Y. Nakagawa, K. Tomishige, Appl. Catal. B:
Environ. 94 (2010) 318.
[
44] Y. Amada, Y. Shinmi, S. Koso, T. Kubota, Y. Nakagawa, K. Tomishige, Appl. Catal.
B: Environ. 105 (2011) 117.
[45] M. Chia, Y.J. Pagán-Torres, D. Hibbitts, Q. Tan, H.N. Pham, A.K. Datye, M.
Neurock, R.J. Davis, J.A. Dumesic, J. Am. Chem. Soc. 133 (2011) 12675.
[
46] D.L. King, L. Zhang, G. Xia, A.M. Karim, D.J. Heldebrant, X. Wang, T. Peterson, Y.
Wang, Appl. Catal. B: Environ. 99 (2010) 206.
[
[
47] M.I. Zaki, M.A. Hasan, L. Pasupulety, Langmuir 17 (2001) 4025.
48] J.A. Wang, X. Bokhimi, O. Novaro, T. López, F. Tzompantzi, R. Gómez, J.
Navarrete, M.E. Llanos, E. López-Salinas, J. Molec. Catal. A: Chem. 137 (1999)
References
239.
[
1] T.E. Bull, Science 285 (1999) 1209.