M. Käldström et al. / Applied Catalysis A: General 397 (2011) 13–21
21
of the formed products. This means that the shape selectivity most
probably did not have a large effect on the product distribution.
A mass balance excluding the non-condensable gases and
comparing transformations over microporous H-MCM-22–50 and
mesoporous H-MCM-36-P22–50 was calculated. The balance was
the most complete with transformations over H-MCM-36-P22–50
mesoporous material and low residence time. At longer residence
times the mass balance was less complete indicating that there is
an increase in the formation of gases (CO2, CO). There was also a sig-
nificant difference in the formed products between H-MCM-22 and
H-MCM-36 catalysts. The former one yielded lower amounts for all
the main liquid products except acetone. H-MCM-22–50 is much
more acidic than H-MCM-36 catalyst, and thus more active, thereby
splitting most of the bonds in levoglucosan into CO2 and CO. The
degree of deactivation of the tested catalyst was quite severe, being
more significant over MCM-22 than over the pillared catalysts. It
was, however, possible to regenerate the catalysts and regain the
surface area.
[9] S. Maheshwari, E. Jordan, S. Kumar, F.S. Bates, R.L. Penn, D.F. Shantz, M. Tsap-
atsis, J. Am. Chem. Soc. 130 (2008) 1507–1516.
[10] S. Maheshwari, C. Martinez, M.T. Portilla, F.J. Llopis, A. Corma, M. Tsapatsis, J.
Catal. 272 (2010) 298–308.
[11] J.-O. Barth, J. Kornatowski, J.A. Lercher, J. Mater. Chem. 12 (2002)
369–373.
[12] W.J. Roth, J.C. Vartuli, C.T. Kresge, in: A. Sayari, al. et (Eds.), Studies in Surface
Science and Catalysis, vol. 129, 2000, pp. 501–508.
[13] W.J. Roth, D.L. Dorset, Micropor. Mesopor. Mater (2010), doi:10.1016/
j.micromeso.2010.11.007.
[14] D. Meloni, R. Monaci, E. Rombi, C. Guimon, H. Martinez, I. Fechete, E. Dumitru, in:
R. Aiello, G. Giordano, F. Testa (Eds.), Studies in Surface Science and Catalsysis,
vol. 142, Elsevier Science, 2002, pp. 167–174.
[15] Y.J. He, G.S. Nivarthy, F. Eder, K. Seshan, J.A. Lercher, Micropor. Mesopor. Mater.
25 (1998) 207–224.
[16] Y. Zhang, H. Xing, P. Yang, P. Wu, M. Jia, J. Sun, T. Wu, React. Kinet. Catal. Lett.
90 (2007) 45–52.
[17] S. Laforge, P. Ayrault, D. Martin, M. Guisnet, Appl. Catal. 279 (2005)
79–88.
[18] E. Dumitiru, F. Secundo, J. Patarin, I. Fechete, J. Mol. Catal. B: Enzym. 22 (2003)
119–133.
[19] J.-O. Barth, A. Jentys, E.F. Ilopoulou, I.A. Vasalos, J.A. Lercher, J. Catal. 227 (2004)
117–129.
[20] M. Lallemand, O.A. Rusu, E. Dumitriu, A. Finiels, F. Fajula, V. Hulea, Appl. Catal.
338 (2008) 37–43.
Acknowledgement
[21] S.-Y. Kim, H.-J. Ban, W.-S. Ahn, Catal. Lett. 113 (February (3–4)) (2007).
[22] Y.-C. Lin, G.W. Huber, Energy Environ. Sci. 2 (2009) 68–80.
[23] J.J. Bozell, G.R. Petersen, Green Chem. 12 (2010) 539–554.
[24] P. Mäki-Arvela, B. Holmbom, T. Salmi, D. Yu Murzin, in: A.T. Bell, K. Klier (Eds.),
Catalysis Reviews, Taylor & Francis Group, 2007, pp. 197–340.
[25] C. Perego, A. Bosetti, Micropor. Mesopor. Mater. (2010), doi:10.1016/
j.micromeso.2010.11.007.
This work is part of the activities at the Åbo Akademi Process
Chemistry Centre within the Finnish Centre of Excellence Pro-
gramme (2000–2011) by the Academy of Finland. L. Österholm is
acknowledged for the TOC analysis and Paul Ek is acknowledged
for the laser ablation-ICP-MS analysis.
[26] S.L. Lawton, M.E. Leowicz, R.D. Partridge, P. Chu, M.K. Rubin, Micropor Mesopor.
Mater. 23 (1998) 109–117.
[27] C.T. Kresge, M.E. Leonowicz, W.J. Roth, J.C. Vartuli, US Patent 5,098,684 (1992).
[28] M.A. Asensi, A. Corma, A.J. Martínez, Catalysis 158 (1996) 561–569.
[29] A. Corma, C. Corell, J. Perez, Zeolites 15 (1995) 2–8.
[30] C.A. Emeis, J. Catal. 143 (1993) 347–354.
[31] A. Corma, V. Fornes, J. Martinez-triguero, S.B. Pergher, J. Catal. 186 (1999)
57–63.
[32] M. Käldström, N. Kumar, T. Heikkilä, M. Tiitta, T. Salmi, D. Yu. Murzin,
Transformation of levoglucosan over H-MCM-22 zeolite and H-
MCM-41 mesoporous molecular sieve catalysts. Biomass Bioenergy,
[33] M. Käldström, N. Kumar, T. Heikkilä, M. Tiitta, T. Salmi, D.Yu. Murzin, Chem-
CatChem 2 (2010) 539–546.
[34] Z. Srokol, A.G. Bouche, A. Estrik, R.C.J. Strik, T. Maschmeyer, J.A. Peters, Carbo-
hydr. Res. 339 (2004) 1717–1726.
[35] A. Aho, M. Käldström, P. Fardim, N. Kumar, K. Eränen, T. Salmi, B. Holmbom, M.
Hupa, D.Yu. Murzin, Cell Chem. Technol. 44 (2010) 89–96.
[36] L. Smrcˇok, M. Sládkovicˇová, V. Langer, C.C. Wilson, M. Koósˇ, Acta Crystallogr.
62 (2006) 912–918.
References
ˇ
[1] W.J. Roth, in: J. Cejka, H. van Bekkum, A. Corma, F. Schüth (Eds.), Introduc-
tion to Zeolite Science and Practice, 3rd revised edition, Elsevier B.V., 2007, pp.
221–239.
[2] M.E. Leonowicz, J.A. Lawton, S.L. Lawton, M.K. Rubin, Science 264 (1994)
1910–1913.
[3] A. Corma, C. Corell, J. Pérez-Pariete, J.M. Guil, R. Guil-López, S. Nicolopoulos, J.
Gonzalez Calbet, M. Vallet-Regi, Zeolites 16 (1996) 7–14.
[4] R. Ravishankar, D. Bhattacharya, N.E. Jacob, S. Sivasanker, Micropor. Mater. 4
(1995) 83–93.
[5] W.J. Roth, C.T. Kresge, J.C. Vartuli, M.E. Leonowicz, A.S. Fung, S.B. McCullen, in:
H.K. Beyer, H.G. Karge, I. Kiricsi, J.B. Nagy (Eds.), Studies in Surface Science and
Catalysis, vol. 94, 1995, pp. 301–307.
[6] W.J. Roth, D.L. Dorset, G.J. Kennedy, Micropor. Mesopor. Mater. (2010),
doi:10.1016/j.micromeso.2010.10.052.
[7] A Corma, C. Corell, J. Perez-Pariente, Zeolites 15 (1995) 2–8.
[8] E. Dumitriu, V. Hulea, I. Fechete, A. Aurox, B. Dargoi, C. Guimon, Prog. Catal. 12
(2003) 47–53.