Please do not adjust margins
ChemComm
Page 4 of 5
COMMUNICATION
Journal Name
Research Funds for the Central Universities (2018CDXYHG0028).
DOI: 10.1039/C9CC09423G
References
1 L. Huang, X. P. Zhang, Y. J. Han, Q. Q. Wang, Y. X. Fang, S. J. Dong, Chem.
Mater. 2017, 29, 4557-4562.
2 H. Luo, W. J. Jiang, C. Lin, W. Dong, S. Niu, L. B. Huang, X. Zhang, Z. Wei and
J. S. Hu, Chem. Commun., 2018, 54, 8190–8193.
3 A. Hamnett, Catalysis Today 1997, 38, 445-457.
4 J. Suntivich, Z. C. Xu, C. E. Carlton, J. Kim, B. H. Han, S. W. Lee, N. Bonnet, N.
Marzari, L. F. Allard, H. A. Gasteiger, K. H. Schifferli, Y. S. Horn, J. Am. Chem.
Soc. 2013, 135, 7985-7991.
Figure 4 In-situ FTIR spectra for methanol oxidation in 0.1 M HClO4 + CH3OH
solution after 100s on Pt1Ru0.5@NC/C (a), Pt1Ru1@NC/C (b) and Pt1Ru2@NC/C (c)
and the corresponding schematic illustration of the MOR on Pt1Ru0.5@NC/C (d),
Pt1Ru1@NC/C (e) and Pt1Ru2@NC/C (f).
5 L. Zhuang, J. Jin, Hector D. Abrun, J. Am. Chem. Soc. 2007, 129, 11033-11035.
6 Y. C.Wei, X. X. Wu, Y. L. Zhao, L. Wang, Z. Zhao, X. T. Huang, J. Liu, J. M.Li,
Applied Catalysis B: Environmental, 2018, 236, 445-457.
7 W. Y. Chen, D. L. Li, C. Peng, G. Qian, X. Z. Duan, D. Chen, X. G. Zhou, Journal
of Catalysis, 2017, 356, 186-196.
surface Pt and Ru contents with MOR activity and reaction pathway,
we can conclude that a relatively low or high surface Ru content is
not beneficial to the MOR. This phenomenon can be explained by the
famous Watanabe-Motoo bifunctional mechanism, in which the
insufficient Ru in Pt1Ru0.5@NC/C catalyst cannot effectively remove
the CO species, while the redundant of Ru in Pt1Ru2@NC/C catalyst
would result in a relative low number of active Pt sites for the
methanol dehydrogenation. The Pt1Ru1@NC/C catalyst with the
optimum Ru and Pt content on the surface can balance these
composition-dependent ensemble effects, which synchronously
promote the MOR activity and anti-CO poisoning ability. Other
representative in-situ FTIR spectra of the as-prepared PtRu alloy at
different time were displayed in the supporting information,
respectively (Figure S12-S16).
In conclusion, we successfully prepared three types of PtRu
catalyst with Pt-rich Pt1Ru0.5/C@NC alloy, Ru-rich Pt1Ru2/C@NC
alloy and Pt1Ru1/C@NC alloy with optimal surface atom ratio of
Pt to Ru. According to the in-situ FTIRs, we observed that the
Pt1Ru0.5/C@NC achieving MOR through HCOO- intermediate
pathway, while the Pt1Ru2/C@NC catalyst attainting MOR
through CO intermediate pathway. Meanwhile, the
Pt1Ru1/C@NC with an optimal ratio of Ru to Pt on the surface
can achieve the best performance of MOR activity and anti-CO
poisoning ability through a mixed pathway of HCOO- and CO
intermediates. Our work demonstrates the significance of
surface composition control at the atomic-level and reveals an
avenue for the exploration of highly active bimetallic
nanoparticles for electrochemical energy conversion.
8 X. L. Sun, D. G. Li, Y. Ding, W. L. Zhu, S. J. Guo, Z. L. Wang, S. H. Sun, J. Am.
Chem. Soc. 2014, 136, 5745-5749.
9 W. Hong, J. Wang, E. Wang, Small 2014, 10, 3262-3265.
10 J. Liu, X. X. Wu, L. P. Yang, F. Wang, J. Yin, Electrochimica Acta, 2019, 297,
539-544.
11 Y. N. Liu, L. R. Zheng, X. Z. Cao, Y. Man, J. T. Feng, J. A. Anderson, D. Q. Li, A.
J. McCue, P. F. Yang, Y. F. He, Chem. Sci., 2019, 10, 3556-3566.
12 K. Zhang, D. Bin, B. B. Yang, C. Q. Wang, F. F. Ren, Y. K. Du, Nanoscale, 2015,
7, 12445-12451
13 Q. M. Wang, S. G. Chen, P. Li, S. Ibraheem, J. Li, J. H. Deng, Z. D. Wei, Applied
Catalysis B: Environmental, 2019, 252, 120-127.
14 W. Hong, J. Wang, E. Wang, Nano Research, 2015, 8, 2308-2316.
15 Z. C. Wang, A. H. Tavabi, L. Jin, J. Rusz, D. Tyutyunnikov, H. Jiang, Y.
Moritomo, J. Mayer, R. E. D. Borkowski, R. Yu, J. Zhu, X. Y. Zhong, Nature
Materials, 2018, 17, 221-225.
16 W. Y. Zhang, Y. Yang, B. L. Huang, F. Lv, K. Wang, N. Li, M. C. Luo, Y. G. Chao,
Y. J. Li, Y. J. Sun, Z. K. Xu, Y. N. Qin, W. X. Yang, J. H. Zhou, Y. P. Du, D. Su, S. J.
Guo, Adv. Mater. 2019, 31, 1805833.
17 J. Y. Wang, Y. Cui, D. Wang, Adv. Mater. 2018, 1801993.
18 Q. M. Wang, S. G. Chen, F. Shi, K. Chen, Y. Nie, Y. Wang, R. Wu, J. Li, Y. Zhang,
W. Ding, Y. Li, L. Li, Z. D. We, Adv. Mater. 2016, 28, 10673-10678.
19 Z. Y. Wu, H. W. Liang, B. C. Hu, S. H. Yu, Angew. Chem. Int. Ed., 2018,
57,15646 -15662.
20 W. Hong, J. Wang, E. Wang, J. Mater. Chem. A, 2015, 3, 13642-13647.
21 Q. B. Fan, C. Pu, E. S. Smotki, J. Electrochem. Soc., 1996, 143, 10.
22 J. Q. Xie, Y. Q. Ji, J. H. Kang, J. L. Sheng, D. S. Mao, X. Z. Fu, R. Sun, Ching-Ping
Wong, Energy & Environmental Science. 2019, 12, 194-205.
23 H. Gong, S. G. Sun, Y. J. Chen, S. P. Chen, J. Phys. Chem. B 2004, 108, 11575-
11584.
24 K. Walter, O. V. Buyevskaya, D. Wolf, M. Baerns, Catalysis Letters, 1994, 29,
261-270.
Conflicts of interest
There are no conflicts to declare.
25 P. Z. Chen, Y. Tong, C. Z. Wu, Y. Xie, Acc. Chem. Res. 2018, 51, 2857-2866.
26 H. W. Zhang, P. K. Shen, Chem. Rev. 2012, 112, 5, 2780-2832.
27 K. Ma, Y. Tian, Z. J. Zhao, Q. P. Cheng, T. Ding, J. Zhang, L. R. Zheng, Z. Jiang,
T. Abe, N. Tsubaki, J. L. Gong, X. G. Li, Chem. Sci., 2019, 10, 2578-2584.
28 Q. Wang, X. Lu, Q. Xin, G. Q. Sun, Chinese Journal of Catalysis, 2014, 35,
1394-1401.
Acknowledgements
This research work was financially supported by the National Key
Research and Development Program of China (2016YFB0101202),
National Natural Science Foundation of China (Grant No. 91534205,
21436003, 21576031 and 21776023), and by the Fundamental
29 J. Kaiser, L. Colmenares, Z. Jusys, R. Mörte, H. Bönnemann, G. Köhl, H.
Modrow, J. Hormes, R. J. Behm, Fuel Cells, 2006, 06, 190-202.
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins