Vol. 25, No. 12 (2013)
Response Surface Methodology for Oxidative Degradation of the Basic Yellow 28 Dye 6839
remained stable at 4.2 mg L-1 after 2 h. Hence, the sulfate ions
formed from sources other than the dye molecule were not
measured.
12. Y. Wu, S. Zhou, F. Qin, X. Ye and K. Zheng, J. Hazard. Mater., 180,
456 (2010).
13. I. Arslan-Alaton, G. Tureli and T. Olmez-Hanci, J. Photochem.
Photobiol. A, 202, 142 (2009).
14. S. Garcia-Segura, L.C. Almeida, N. Bocchi and E. Brillas, J. Hazard.
Mater., 194, 109 (2011).
15. A.R. Khataee, M. Zarei and S.K. Asl, J. Electroanal. Chem., 648, 143
(2010).
16. I. Yahiaoui, F. Aissani-Benissad, F. Fourcade and A. Amrane, Environ.
Prog. Sustain. Energy, 31, 515 (2012).
17. M.J. Lee, Y.S. Kim, C.K. Yoo, J.H. Song and S.J. Hwang, Environ.
Technol., 31, 7 (2010).
18. L. Lei, Q. Dai, M. Zhou and X. Zhang, Chemosphere, 68, 1135 (2007).
19. A. Kumar, B. Prasad and I.M. Mishra, J. Hazard. Mater., 150, 174
(2008).
20. K.P. Singh, S. Gupta, A.K. Singh and S. Sinha, J. Hazard. Mater., 186,
1462 (2011).
21. C.J. Liang. C.J. Bruell, M.C. Marley and K.L. Sperry, Soil Sediment
Contam., 12, 207 (2003).
22. K.C. Huang, Z. Zhao, G.E. Hoag, A. Dahmani and P.A. Block, Chemosphere,
61, 551 (2005).
Conclusion
Degradation and mineralization of 40 mg L-1 of the basic
yellow 28 aqueous solution by the S2O82-/Fe2+ system at pH
3.5 was studied as a function oxidation time, temperature and
initial concentration of Fe2+ and S2O82-. The application of the
Box-Benkhen design combined with the response surface
modeling and optimization helped in attaining the optimal
solution of reaching the maximum basic yellow 28 degradation
in an aqueous solution by the S2O82-/Fe2+ system. The optimum
conditions were satisfied as 8 h treatment at 65 ºC reaction
temperature; 9.87 mM persulfate initial concentration and 1.95
mM ferrous ion concentration; thereby realizing 93 % TOC
removal per cent. It was demonstrated that the basic yellow
28 structure is broken down into two main aromatic interme-
diates early in the process. To reach a TOC removal percent of
93 %, it was observed that the above mentioned aromatic struc-
tures underwent a ring opening as well as the occurrence of
smaller structures, such as organic carboxylic acids.
23. R.H. Waldemer, P.G. Tratnyek, R.L. Johnson and J.T. Nurmi, Environ.
Sci. Technol., 41, 1010 (2007).
24. S.Y. Oh, H.W. Kim, J.M. Park, H.S. Park and C.Yoon, J. Hazard. Mater.,
168, 346 (2009).
25. S.X. Li, D. Wei, N.K. Mak, Z.W. Cai, X.R. Xu, H.B. Li andY. Jiang, J.
Hazard. Mater., 164, 26 (2009).
26. P. Nfodzo and H. Choi, Chem. Eng. J., 174, 629 (2011).
27. B. Jancic-Stojanovic,A. Malenovic, D. Ivanovic, T. Rakic and M. Medenica,
J. Chromatogr. A, 1216, 1263 (2009).
ACKNOWLEDGEMENTS
The authors are grateful to the Mersin University Research
Found (contract no: BAB-FEF KB (BG) 2010-4A) for the
financial support and Mersin University Research and Appli-
cation Center (MEITAM) for providing the facilities at the
GC-MS and ion chromatography analysis.
28. M.A. Bezerra, R.E. Santelli, E.P. Oliveria, L.S. Villar and L.A. Escaleria,
Talanta, 76, 965 (2008).
29. R.H. Myers and D.C. Montgomery, Response Surface Methodology:
Process and Product Optimization using Designed Experiments, John
Wiley & Sons, USA, edn. 2 (2002).
30. S. Hammami, N. Oturan, N. Bellakhal, M. Dachraoui and M.A. Oturan,
J. Electroanal. Chem., 610, 75 (2007).
31. S. Ghasempur, S.F. Torabi, S.O. Ranaei-Siadat, M. Jalali-Heravi, N.
Ghaemi and K. Khajeh, Environ. Sci. Technol., 41, 7073 (2007).
32. H.L. Liu and Y.R. Chiou, Chem. Eng. J., 112, 173 (2005).
33. A.R. Khataee, Environ. Technol., 31, 73 (2010).
34. M.J. Anderson and P.J. Whitcomb, RSM Simplified, Optimizing Pro-
cesses using Response Surface Methods for Design of Experiments,
CRC Press Taylor & Francis Group, New York (2005).
35. W.J. Mcelroy and S.J. Waygood, J. Chem. Soc. Faraday Trans., 86,
2557 (1990).
REFERENCES
1. O.J. Hao, H. Kim and P.C. Chang, Crit. Rev. Environ. Sci. Technol.,
30, 449 (2000).
2. S.F. Li, Bioresour. Technol., 101, 2197 (2010).
3. K.C. Huang, R.A. Couttenye and G.E. Hoag, Chemosphere, 49, 413
(2002).
4. C. Liang, C.J. Bruell, M.C. Marley and K.L. Sperry, Chemosphere,
55, 1213 (2004).
5. G.P. Anipsitakis and D.D. Dionysiou, Appl. Catal. B, 54, 155 (2004).
6. T.K. Lau, W. Chu and N.J.D. Graham, Environ. Sci. Technol., 41, 613
(2007).
7. X.R. Xu and X.Z. Li, Sep. Purif. Technol., 72, 105 (2010).
8. L. Eberson, Electron Transfer Reactions in Organic Chemistry,
Springer-Verlag, Berlin (1987).
36. J.D. Laat and T.G. Le, Environ. Sci. Technol., 39, 1811 (2005).
37. M.S. Tsao and W.K. Wilmarth, J. Phys. Chem., 63, 346 (1959).
38. B. Gozmen, M. Turabik and A. Hesenov, J Hazard. Mater., 164, 1487
(2009).
39. E. Brillas, M.A. Banos and J.A. Garrido, Electrochim. Acta, 48, 1697
(2003).
9. I.M. Kolthoff, A.I. Medalia and H.P. Raaen, J. Am. Chem. Soc., 73,
1733 (1951).
10. C. Liang, Z.S. Wang and C.J. Bruell, Chemosphere, 66, 106 (2007).
11. I.H. Cho and K.D. Zoh, Dyes Pigments, 75, 533 (2007).
40. Design-Expert Software version 8.00 User's Guide (2010).
41. B. Neppolian, H. Jung, H. Choi, J.H. Lee and J.W. Kang, Water Res.,
36, 4699 (2002).