Organic Letters
Letter
1
22, 12003−12004. (b) Trost, B. M.; Bartlett, M. J. ProPhenol-
(16) For a recent example of transamidation driven by activation of
the amide bond, see Li, G.; Szostak, M. Highly selective transition-
metal-free transamidation of amides and amidation of esters at room
temperature. Nat. Commun. 2018, 9, 4165−4172.
Catalyzed Asymmetric Additions by Spontaneously Assembled
Dinuclear Main Group Metal Complexes. Acc. Chem. Res. 2015, 48,
6
(
88−701.
7) (a) Harada, S.; Handa, S.; Matsunaga, S.; Shibasaki, M. Direct
(17) For the X-ray data, see Supporting Information. Crystallo-
Catalytic Asymmetric Mannich-Type Reactions of N-(2-
Hydroxyacetyl)pyrrole as an Ester-Equivalent Donor. Angew. Chem.,
Int. Ed. 2005, 44, 4365−4368. (b) Morimoto, H.; Lu, G.; Aoyama, N.;
Matsunaga, S.; Shibasaki, M. Lanthanum Aryloxide/Pybox-Catalyzed
Direct Asymmetric Mannich-Type Reactions Using a Trichloromethyl
Ketone as a Propionate Equivalent Donor. J. Am. Chem. Soc. 2007,
graphic data for amide 13a and [(R)-DTBM-SEGPHOS]NiCl have
2
been also deposited at Cambridge Crystallographic Data Centre as
supplementary publication number CCDC 1857787 and CCDC
1857788, respectively.
(18) Suzuki, T.; Hamashima, Y.; Sodeoka, M. Asymmetric
Fluorination of α−Aryl Acetic Acid Derivatives with the Catalytic
1
29, 9588−9589.
8) (a) Saito, S.; Kobayashi, S. Highly anti-Selective Catalytic Aldol
Reactions of Amides with Aldehydes. J. Am. Chem. Soc. 2006, 128,
System NiCl
2007, 46, 5435−5439.
(19) Theoretical calculations were carried out using QM/MM
algorithm methodology to localise the transition states. These show
that one of the phosphine ligands hinders the approach of said
carbocation to the Si face of the enolate (ΔΔG‡ ≈ 2.7 kcal mol )
and thus determines the π−face selectivity of the addition. For details
of theoretical calculations, see Supporting Information.
2
−Binap/R SiOTf/2,6-Lutidine. Angew. Chem., Int. Ed.
3
(
8
704−8705. (b) Suzuki, H.; Sato, I.; Yamashita, Y.; Kobayashi, S.
Catalytic Asymmetric Direct-Type 1,4-Addition Reactions of Simple
−
1
Amides. J. Am. Chem. Soc. 2015, 137, 4336−4339.
(9) (a) Evans, D. A.; Downey, C. W.; Hubbs, J. L. Ni(II)
Bis(oxazoline)-Catalyzed Enantioselective Syn Aldol Reactions of N-
Propionylthiazolidinethiones in the Presence of Silyl Triflates. J. Am.
Chem. Soc. 2003, 125, 8706−8707. (b) Evans, D. A.; Thomson, R. J.
Ni(II) Tol-BINAP-Catalyzed Enantioselective Orthoester Alkylations
of N-Acylthiazolidinethiones. J. Am. Chem. Soc. 2005, 127, 10506−
(
20) Delle Monache, F.; Compagnone, R. S. A Secolignan from
Peperomia Glabella. Phytochemistry 1996, 43, 1097−1098.
21) For a previous total synthesis of peperomin D, see Sibi, M. P.;
(
Johnson, M. D.; Punniyamurthy, T. Enantioselective synthesis of
peperomins A, C, D, and analogs − Examination of diastereoselective
cuprate conjugate additions to N-enoyl-4-diphenylmethyl-2-oxazoli-
dinones. Can. J. Chem. 2001, 79, 1546−1555.
1
(
0507.
10) (a) Weidner, K.; Kumagai, N.; Shibasaki, M. A Designed Amide
as an Aldol Donor in the Direct Catalytic Asymmetric Aldol Reaction.
Angew. Chem., Int. Ed. 2014, 53, 6150−6154. (b) Weidner, K.; Sun,
Z.; Kumagai, N.; Shibasaki, M. Direct Catalytic Asymmetric Aldol
Reaction of an α−Azido Amide. Angew. Chem., Int. Ed. 2015, 54,
6
236−6240. (c) Liu, Z.; Takeuchi, T.; Pluta, R.; Arteaga, F. A.;
Kumagai, N.; Shibasaki, M. Direct Catalytic Asymmetric Aldol
Reaction of α−Alkylamides. Org. Lett. 2017, 19, 710−713.
(11) Kumagai, N.; Shibasaki, M. Nucleophilic and Electrophilic
Activation of Non-Heteroaromatic Amides in Atom-Economical
Asymmetric Catalysis. Chem. - Eur. J. 2016, 22, 15192−15200.
(
12) (a) Romo, J. M.; Galvez, E.; Nubiola, I.; Romea, P.; Urpí, F.;
́
Kindred, M. Diastereoselective Methyl Orthoformate Alkylations of
Chiral N-Acylthiazolidinethiones Catalyzed by Nickel(II) Complexes.
́
Adv. Synth. Catal. 2013, 355, 2781−2786. (b) Fernandez-Valparis, J.;
Romo, J. M.; Romea, P.; Urpí, F.; Kowalski, H.; Font-Bardia, M.
Stereoselective Alkylation of (S)-N-Acyl-4-isopropyl-1,3-thiazolidine-
2
3
-thiones Catalyzed by (Me P) NiCl . Org. Lett. 2015, 17, 3540−
3
2
2
543. (c) Kennington, S. C. D.; Ferre, M.; Romo, J. M.; Romea, P.;
́
Urpí, F.; Font-Bardia, M. Diastereoselective and Catalytic α−
Alkylation of Chiral N-Acyl Thiazolidinethiones with Stable
Carbocationic Salts. J. Org. Chem. 2017, 82, 6426−6433. (d) Fernan-
́
dez-Valparis, J.; Romea, P.; Urpí, F.; Font-Bardia, M. Stereoselective
and Catalytic Synthesis of anti-β-Alkoxy-α-azido Carboxylic Deriva-
tives. Org. Lett. 2017, 19, 6400−6403.
(13) (a) Hoffmann, R. Building Bridges Between Inorganic and
Organic Chemistry (Nobel Lecture). Angew. Chem., Int. Ed. Engl.
1
982, 21, 711−724. (b) Elian, M.; Chen, M. M. L.; Mingos, M. P.;
Hoffmann, R. Comparative Bonding Study of Conical Fragments.
Inorg. Chem. 1976, 15, 1148−1155.
(14) Likely, the good leaving group character of the thiazinanethione
scaffold as well as the distorted amide bond of 10a are the reasons for
its smooth conversion into a variety of intermediates. For a recent
review on the structure and reactivity of twisted amides, see Liu, C.;
Szostak, M. Twisted Amides: From Obscurity to Broadly Useful
Transition-Metal-Catalyzed Reactions by N−C Amide Bond
Activation. Chem. - Eur. J. 2017, 23, 7157−7173.
(15) For a parallel analysis on the structure and reactivity of related
N-acyl thiazolidinethiones, see (a) Yamada, S. Structure and
Reactivity of a Highly Twisted Amide. Angew. Chem., Int. Ed. Engl.
1
993, 32, 1083−1085. (b) Cosp, A.; Larrosa, I.; Anglada, J. M.; Bofill,
J. M.; Romea, P.; Urpí, F. Studies on the Intramolecular C−H···X (X
O, S) Interactions in (S)-N-Acyl-4-isopropyl-1,3-thiazolidine-2-
thiones and Related 1,3-Oxazolidin-2-ones. Org. Lett. 2003, 5, 2809−
812.
=
2
E
Org. Lett. XXXX, XXX, XXX−XXX