Mendeleev Commun., 2011, 21, 280–281
Table 2 [TETA]TFA catalyzed synthesis of tetrahydrobenzo[b]pyrans 5a–m
at least 8 runs without loss of its activity. In comparison with the
reported IL [bmim]OH10 and [bmim]PF617 systems, our IL catalytic
system shows comparative yields and excellent reusabilities.
In summary, we have prepared a series of new basic task-specific
ionic liquids and used them as catalysts for the synthesis of pyran-
annulated heterocyclic systems. This novel catalytic system
demonstrates the advantages of environmentally benign charac-
ter, mild reaction conditions, short reaction times, high yields,
easy handling as well as good reusability.
in aqueous media.a
Time/ Yield
min
Entry Ar
R
Product
Mp/°C
(%)b
1
2
3
4
5
6
7
8
9
10
11
12
13
4-ClC6H4
2,4-Cl2C6H3 Me 5b
4-BrC6H4
4-O2NC6H4
3-O2NC6H4
Ph
Me 5a
10
30
5
94
94
92
87
91
85
50
88
89
83
73
69
75
211–2134(a)
114–1166
193–1953
183–1857
202–2046
213–21613
205–2078
197–1997
208–2104(a)
214–2158
228–2305
220–2229
186–1897
Me 5c
Me 5d
Me 5e
Me 5f
Me 5g
30
25
20
240
50
15
25
90
10
30
This work was supported by the National Natural Science
Foundation of China (grant nos. 21072077 and 20672046)
and the Guangdong Natural Science Foundation (grant nos.
110151063201000051 and 8151063201000016).
4-HOC6H4
4-MeOC6H4 Me 5h
4-MeC6H4 Me 5i
4-Me2NC6H4 Me 5j
2-Furyl
Ph
Me 5k
H
H
5l
5m
Online Supplementary Materials
Supplementary data associated with this article can be found
in the online version at doi:10.1016/j.mencom.2011.09.017.
4-MeOC6H4
a Reaction conditions: aldehyde (2.0 mmol), malononitrile (2.0 mmol),
dimedone (or cyclohexane-1,3-dione) (2.0 mmol), [TETA]TFA (0.1 mmol),
H2O–EtOH (1:1, 5.0 ml), reflux. b Isolated yield.
References
1 (a) L. L. Andreani and E. Lapi, Bull. Chim. Farm., 1960, 99, 583; (b)Y. L.
Zhang, B. Z. Chen, K. Q. Zheng, M. L. Xu and X. H. Lei, Yao Xue Xue
Bao, 1982, 17, 17; (c) L. Bonsignore, G. Loy, D. Secci andA. Calignano,
Eur. J. Med. Chem., 1993, 28, 517; (d) G. R. Green, J. M. Evans and
A. K. Vong, in Comprehensive Heterocyclic Chemistry II, eds. A. R.
Katritzky, C. W. Rees and E. F. V. Scriven, Pergamon, Oxford, 1995,
vol. 5, p. 469.
2 I. Devi and P. J. Bhuyan, Tetrahedron Lett., 2004, 45, 8625.
3 S. J. Tu, H. Jiang, Q. Y. Zhuang, C. B. Miu, D. Q. Shi, X. S. Wang and
Y. Gao, Chin. J. Org. Chem., 2003, 23, 488.
4 (a) S. Gurumurthi, V. Sundari and R. Valliappan, E-J. Chem., 2009, 6,
S466; (b) J. M. Khurana and S. Kumar, Tetrahedron Lett., 2009, 50,
4125.
5 S. J. Gao, C. H. Tsai, C. Tseng and C. F. Yao, Tetrahedron, 2008, 64,
9143.
6 L. M. Wang, J. H. Shao, H. Tian, Y. H. Wang and B. Liu, J. Fluorine
Chem., 2006, 127, 97.
7 D. Fang, H. B. Zhang and Z. L. Liu, J. Heterocycl. Chem., 2010, 47, 63.
8 R. Hekmatshoar, S. Majedi and K. Bakhtiari, Catal. Commun., 2008, 9,
307.
9 M. Seifi and H. Sheibani, Catal. Lett., 2008, 126, 275.
10 K. Gong, H. L. Wang, J. Luo and Z. L. Liu, J. Heterocycl. Chem., 2009,
46, 1145.
11 (a) P. Wasserscheid and W. Keim, Angew. Chem. Int. Ed., 2000, 39,
3772; (b) R. Sheldon, Chem. Commun., 2001, 2399; (c) S. G. Lee, Chem.
Commun., 2006, 1049; (d) Z. F. Fei, T. J. Geldbach, D. B. Zhao and
P. J. Dyson, Chem.-Eur. J., 2006, 12, 2122; (e) T. L. Greaves and
C. Drummond, J. Chem. Rev., 2008, 108, 206.
Subsequently, we demonstrated the scope and generality of
the present method by the reaction of various benzaldehydes 1
with malononitrile 2 and cyclohexane-1,3-diones 3 catalyzed by
[TETA]TFA under the optimal conditions (Table 2). Benzaldehyde
and the aromatic aldehydes bearing electron-withdrawing groups
(such as nitro group, halogen) (Table 2, entries 1–6) required a
shorter reaction time and gave higher yields than those bearing
electron-donating groups (such as N,N-dimethylamino, hydroxy,
methoxy and methyl) (Table 2, entries 7–10). Note that no O-pro-
tection was required for 4-hydroxybenzaldehyde (Table 2, entry 7).
Encouraged by these results, we extended the scope of this
method towards the synthesis of pyrano[c]chromenes 6 from
4-hydroxycoumarin 4 (Scheme 2, Table 3). 3-Nitrobenzaldehyde
bearing nitro group in meta-position in the aromatic ring has
lower reactivity and required longer reaction time (Table 3, entry 5)
than p-nitro-substituted benzaldehyde (entry 1). Other benzalde-
hydes provided good yields in short time (Table 3, entries 2–4).
In view of green chemistry, reuse of the catalyst is highly
preferable. The reusability of the catalyst was exemplified on
reaction between 4-chlorobenzaldehyde, dimedone and malono-
nitrile. After the separation of products, the IL catalyst was
easily recovered and recycled by removal of the filtrate after
filtering off the products. The product was obtained in 94, 94,
95, 93, 94, 93, 91 and 90% yield in consecutive 1 to 8 runs,
respectively, which indicated that the catalyst could be reused for
12 (a) S. G. Zlotin and N. N. Makhova, Mendeleev Commun., 2010, 20, 63;
(b) S. G. Zlotin and N. N. Makhova, Usp. Khim., 2010, 79, 603 (Russ.
Chem. Rev., 2010, 79, 543).
13 Z. Q. Jiang, S. J. Ji, J. Lu and J. M. Yang, Chin. J. Chem., 2005, 23,
1085.
Table 3 [TETA]TFA catalyzed synthesis of pyrano[c]chromenes 6a–e in
aqueous media.a
14 A. Shaabani, S. Samadi, Z. Badri and A. Rahmati, Catal. Lett., 2005,
104, 39.
Entry Ar
Product Time/min Yield (%)b Mp/°C
15 A. Shaabani, S. Samadi and A. Rahmati, Synth. Commun., 2007, 37, 491.
16 D. Q. Shi, N. Wu and Q. Y. Zhuang, J. Chem. Res., 2008, 9, 542.
17 A. M. Shestopalov, S. G. Zlotin, A. A. Shestopalov, V.Yu. Mortikov and
L. A. Rodinovskaya, Izv. Akad. Nauk, Ser. Khim., 2004, 546 (Russ. Chem.
Bull., Int. Ed., 2004, 53, 573).
1
2
3
4
5
4-O2NC6H4
Ph
4-MeOC6H4
4-MeC6H4
3-O2NC6H4
6a
6b
6c
6d
6e
10
20
50
20
120
94
86
85
88
75
249–25114
253–25514
238–24015
245–24716
246–24816
a Reaction conditions: aldehyde (2.0 mmol), malononitrile (2.0 mmol),
4-hydroxycoumarin (2.0 mmol), [TETA]TFA (0.1 mmol), H2O–EtOH (1:1,
5.0 ml), reflux. b Isolated yield.
Received: 17th March 2011; Com. 11/3699
– 281 –