D
Synlett
N. Azizi et al.
Letter
The recovery and reuse of the magnetic catalyst were
studied for the preparation of 4a as a model (Figure 2). Be-
cause of the low solubility of Fe O @g-C N in organic sol-
(3) (a) Slobbe, P.; Ruijter, E.; Orru, R. Med. Chem. Commun. 2012, 3,
1189. (b) Gu, Y.; Jérôme, F. Green Chem. 2010, 12, 1127. (c) Gu,
Y.; Jérôme, F. Chem. Soc. Rev. 2013, 42, 9550.
3
4
3
4
(
4) Saleh, T. S.; Abd El-Rahman, N. M.; Elkateb, A. A.; Shaker, N. O.;
Mahmoud, N. A.; Gabal, S. A. Ultrason. Sonochem. 2012, 19, 491.
5) Pratap, U. R.; Jawale, D. V.; Netankar, P. D.; Mane, R. A. Tetrahe-
dron Lett. 2011, 52, 5817.
vents, its stable nanostructure, and good magnetization, it
is easily separated by an external magnet. After the initial
reaction was complete, ethanol was added and the catalyst
was separated and reused directly in a subsequent reaction
without any pretreatment such as drying or washing. As
shown in Figure 2, the catalyst could be recycled at least ten
times without any marked decrease in the yield, which
ranged from 97% to 92%.
(
(6) Peng, Y.; Song, G. Catal. Commun. 2007, 8, 111.
(7) (a) Wang, L.-M.; Shao, J.-H.; Tian, H.; Wang, Y.-H.; Liu, B. J. Fluo-
rine Chem. 2006, 127, 97. (b) Balalaie, S.; Bararjanian, M.; Sheik-
Ahmadi, M.; Hekmat, S.; Salehi, P. Synth. Commun. 2007, 37,
1097. (c) Devi, I.; Bhuyan, P. J. Tetrahedron Lett. 2004, 45, 8625.
(d) Lian, X.-Z.; Huang, Y.; Li, Y.-Q.; Zheng, W. O. J. Monatsh.
Chem. 2008, 139, 129. (e) Beerappa, M.; Shivashankar, K. RSC
Adv. 2015, 5, 30364. (f) Singh, K.; Singh, J.; Singh, H. Tetrahedron
1996, 52, 14273. (g) Kaupp, G.; Naimi-Jama, M. R.; Schmeyers, J.
Tetrahedron 2003, 59, 3753. (h) Gao, S.; Tsai, C. H.; Tseng, C.; Yao,
C.-F. Tetrahedron 2008, 64, 9143. (i) Rosati, O.; Pelos, A.;
Temperini, A.; Pace, V.; Curini, M. Synthesis 2016, 48, 1533.
(
2
j) Azizi, N.; Dezfooli, S.; Mahmoudi Hashemi, M. J. Mol. Liq.
014, 194, 62. (k) Azizi, N.; Dezfooli, S.; Khajeh, M.; Hashemi, M.
M. J. Mol. Liq. 2013, 186, 76. (l) Khan, A. T.; Lal, M.; Ali, S.; Khan,
M. M. Tetrahedron Lett. 2011, 52, 5327. (m) Guo, R.-Y.; An, Z.-M.;
Mo, L.-P.; Wang, R.-Z.; Liu, H.-X.; Wang, S.-X.; Zhang, Z.-H. ACS
Comb. Sci. 2013, 15, 557. (n) Sun, W.-B.; Zhang, P.; Fan, J.; Chen,
S.-H.; Zhang, Z.-H. Synth. Commun. 2010, 40, 587. (o) Rahala;
Rai, P.; Ibad, A.; Sagir, H.; Siddiqui, I. R. ChemistrySelect 2016, 1,
Figure 2 A reusability and recycling study of the nanocatalyst
1
300.
In summary, by using Fe O @g-C N as a recyclable cat-
alyst, we have developed a mild and green one-pot synthe-
sis of 4H-pyran derivatives in good to excellent yields (72–
7%) within a short reaction time (30–190 min), and the
3
4
3
4
(
8) (a) Azizi, N.; Khajeh-Amiri, A.; Ghafuri, H.; Bolourtchian, M. Mol.
Diversity 2011, 15, 157. (b) Azizi, N.; Saidi, M. R. Phosphorus,
Sulfur Silicon Relat. Elem. 2003, 178, 1255. (c) Mirmashhori, B.;
Azizi, N.; Saidi, M. R. J. Mol. Catal. A: Chem. 2006, 247, 159.
9) (a) Tan, C.; Cao, X.; Wu, X.-J.; He, Q.; Yang, J.; Zhang, X.; Chen, J.;
Zhao, W.; Han, S.; Nam, G.-H.; Sindoro, M.; Zhang, H. Chem. Rev.
9
(
products can be purified by simple crystallization. The
magnetically recoverable and inexpensive catalyst and sim-
ple experimental procedure with no column purification or
hazardous organic solvent are advantages of this pro-
2
017, 117, 6225. (b) Cha, C.; Shin, S. R.; Annabi, N.; Dokmec, M.
R.; Khademhosseini, A. ACS Nano 2013, 7, 2891.
(
10) (a) Kumar, S.; Surendar, T.; Kumar, B.; Baruah, A.; Shanker, V. J.
Phys. Chem. C 2013, 117, 26135. (b) Schultz, D. M.; Yoon, T. P.
Science 2014, 343, 1239176.
13,14
cess.
(
11) (a) Wang, A.; Wang, C.; Fu, L.; Wong-Ng, W.; Lan, Y. Nano-Micro
Lett. 2017, 9, 47. (b) Ong, W.-J.; Tan, L.-L.; Ng, Y. H.; Yong, S.-T.;
Chai, S.-P. Chem. Rev. 2016, 116, 7159. (c) Li, X.; Yu, J.; Low, J.;
Fang, Y.; Xiao, J.; Chen, X. J. Mater. Chem. A 2015, 3, 2485. (d) Xu,
Y.-S.; Zhang, W. D. ChemCatChem 2013, 5, 2343.
Funding Information
Financial support of this work by the Chemistry and Chemical Engi-
neering Research Center of Iran is gratefully appreciated.
)(
(12) (a) Mamba, G.; Mishra, A. K. Appl. Catal., B 2016, 198, 347.
(
1
b) Qiu, Y.; Xin, L.; Jia, F.; Xie, J.; Li, W. Langmuir 2016, 32,
2569. (c) Wang, P.; Lu, N.; Su, Y.; Liu, N.; Yu, H.; Li, J.; Wu, Y.
Appl. Surf. Sci. 2017, 423, 197. (d) Wei, Y.; Zeng, X. Synlett 2016,
7, 650. (e) Lu, J.; Li, X.-T.; Ma, E.-Q.; Mo, L.-P.; Zhang, Z.-H.
References and Notes
(
1) (a) Dömling, A. Chem. Rev. 2006, 106, 17. (b) Ramón, D. J.; Yus,
M. Angew. Chem. Int. Ed. 2005, 44, 1602. (c) Toure, B. B.; Hall, D.
G. Chem. Rev. 2009, 109, 4439. (d) de Graaff, C.; Ruijter, E.; Orru,
R. Chem. Soc. Rev. 2012, 41, 3969. (e) Shivani, B. P.; Chakraborti,
A. K. J. Org. Chem. 2007, 72, 3713. (f) Pujala, B.; Rana, S.;
Chakraborti, A. K. J. Org. Chem. 2011, 76, 8768. (g) Chakraborti,
A. K.; Rudrawar, S.; Kondaskar, A. Eur. J. Org. Chem. 2004, 3597.
2
ChemCatChem 2014, 6, 2854.
(
13) 4H-Pyrans; General Procedure
A mixture of the appropriate aldehyde 1 (1.0 mmol), malononi-
trile (2; 1.0 mmol), 1,3-dicarbonyl compound 3 (1.0 mmol), and
Fe O @g-C N (20 mg) in EtOH (1 mL) was stirred at 60 °C for 60
min until the reaction was complete (TLC). EtOH (10 mL) was
added, and the Fe O @g-C N was separated with an external
magnet. The crude product was then crystallized from EtOH.
2
4
3
4
3
4
(h) Chakraborti, A.; Rudrawara, S.; Kondaskar, A. Org. Biomol.
3
4
3
4
Chem. 2004, 2, 1277.
(2) (a) Liu, P.; Hao, J.-W.; Mo, L.-P.; Zhang, Z.-H. RSC Adv. 2015, 5,
-Amino-7,7-dimethyl-5-oxo-4-phenyl-5,6,7,8-tetrahydro-
48675. (b) Gu, Y. Green Chem. 2012, 14, 2091. (c) Orru, R. V. A.;
H-chromene-3-carbonitrile (4a)
de Greef, M. Synthesis 2003, 1471. (d) Hu, H.-C.; Liu, Y.-H.; Li, B.-
L.; Cui, Z.-S.; Zhang, Z.-H. RSC Adv. 2015, 5, 7720.
1
Colorless crystals; yield: 143 mg (97%); mp 228–230 °C. H NMR
(CDCl , 500 MHz): δ = 7.38–7.00 (m, 7 H, PhH and NH ), 4.30 (s,
3
2
1
H), 5.23 (s, 2 H), 2.39 (m, 2 H), 2.13–2.15 (m, 2 H), 1.03 (s, 3 H),
©
Georg Thieme Verlag Stuttgart · New York — Synlett 2018, 29, A–E