4344 Journal of Medicinal Chemistry, 2005, Vol. 48, No. 13
Foloppe et al.
(28) Rhind, N.; Russell, P. Chk1 and Cds1: linchpins of the DNA
damage and replication checkpoint pathways. J. Cell Sci. 2000,
113, 3889-3896.
(29) Chen, Z.; Xiao, Z.; Chen, J.; Ng, S.-C.; Sowin, T.; et al. Human
Chk1 Expression Is Dispensable for Somatic Cell Death and
Critical for Sustaining G2 DNA Damage Checkpoint. Mol. Cancer
Ther. 2003, 2, 543-548.
(30) Zachos, G.; Rainey, M. D.; Gillespie, D. A. F. Chk1-deficient
tumour cells are viable but exhibit multiple checkpoint and
survival defects. EMBO J. 2003, 22, 713-723.
(31) Graves, P. R.; Yu, L.; Schwarz, J. K.; Gales, J.; Sausville, E. A.;
et al. The Chk1 Protein Kinase and the Cdc25C Regulatory
Pathways are Targets of the Anticancer Agent UCN-01. J. Biol.
Chem. 2000, 275, 5600-5605.
(32) Busby, E. C.; Leistritz, D. F.; Abraham, R. T.; Karnitz, L. M.;
Sarkaria, J. N. The Radiosensitizing Agent 7-Hydroxystauro-
sporine (UCN-01) Inhibits the DNA Damage Checkpoint Kinase
hChk1. Cancer Res. 2000, 2000, 2108-2112.
(33) Jackson, J. R.; Gilmartin, A.; Imburgia, C.; Winkler, J. D.;
Marshall, L. A.; et al. An Indolocarbazole Inhibitor of Human
Checkpoint Kinase (Chk1) Abrogates Cell Cycle Arrest Caused
by DNA Damage. Cancer Res. 2000, 60, 566-572.
(34) Eastman, A.; Kohn, E. A.; Brown, M. K.; Rathman, J.; Living-
stone, M.; et al. A Novel Indolocarbazole, ICP-1, Abrogates DNA
Damage-induced Cell Cycle Arrest and Enhances Cytotoxicity:
Similarities and Differences to the Cell Cycle Checkpoint Ab-
rogator UCN-01. Mol. Cancer Ther. 2002, 1, 1067-1078.
(35) Roberge, M.; Berlinck, R. G. S.; Xu, L.; Anderson, H. J.; Lim, L.
Y.; et al. High-throughput assay for G2 checkpoint inhibitors
and identification of the structurally novel compound isogranu-
latimide. Cancer Res. 1998, 58, 5701-5706.
(36) Kohn, E. A.; Yoo, C. J.; Eastman, A. The Protein Kinase C
Inhibitor Go¨6976 Is a Potent Inhibitor of DNA Damage-induced
S and G2 Cell Cycle Checkpoints. Cancer Res. 2003, 63, 31-35.
(37) Curman, D.; Cinel, B.; Williams, D. E.; Rundle, N.; Block, W.
D.; et al. Inhibition of the G2 DNA Damage Checkpoint and of
Protein Kinases Chk1 and Chk2 by the Marine Sponge Alkaloid
Debromohymenialdisine. J. Biol. Chem. 2001, 21, 17914-17919.
(38) Sausville, E. A.; Arbuck, S. G.; Messmann, R.; Headlee, D.; Lush,
R. D.; et al. Phase I Trial of 72-Hour Continuous Infusion UCN-
01 in Patients with Refractory Neoplasms. J. Clin. Oncol. 2001,
19, 2319-2333.
(54) Levitt, M.; Perutz, M. F. Aromatic Rings Act as Hydrogen Bond
Acceptors. J. Mol. Biol. 1988, 201, 751-754.
(55) Meyer, E. A.; Castellano, R. K.; Diederich, F. Interactions with
Aromatic Rings in Chemical and Biological Recognition. Angew.
Chem. 2003, 42, 1210-1250.
(56) Steiner, T.; Koellner, G. Hydrogen Bonds with pi-Acceptors in
Proteins: Frequencies and Role in Stabilizing Local 3D Struc-
ture. J. Mol. Biol. 2001, 305, 535-557.
(57) Bo¨hm, H. J.; Stahl, M. The use of Scoring Functions in Drug
Discovery Applications. Reviews in Computational Chemistry;
Wiley-VCH: New York, 2002; pp 41-87.
(58) Thomas, K. A.; Smith, G. M.; Thomas, T. B.; Feldmann, R. J.
Electronic distributions within protein phenylalanine aromatic
rings are reflected by the three-dimensional oxygen atom
environments. Proc. Natl. Acad. Sci. U.S.A. 1982, 79, 4843-
4847.
(59) Kollman, P. A.; Massova, I.; Reyes, C.; Kuhn, B.; Huo, S.; et al.
Calculating Structures and Free Energies of Complex Mol-
ecules: Combining Molecular Mechanics and Continuum Mod-
els. Acc. Chem. Res. 2000, 33, 889-897.
(60) Hu¨nenberger, P. H.; Helms, V.; Narayana, N.; Taylor, S. S.;
McCammon, J. A. Determinants of Ligand Binding to cAMP-
Dependent Protein Kinase. Biochemistry 1999, 38, 2358-2366.
(61) Sirockin, F.; Sich, C.; Improta, S.; Schaefer, M.; Saudek, V.; et
al. Structure Activity Relationship by NMR and by Computer:
A Comparative Study. J. Am. Chem. Soc. 2002, 124, 11073-
11084.
(62) Halgren, T. Merck Molecular Force Field. I. Basis, Form, Scope,
Parametrization, and Performance of MMFF94. J. Comput.
Chem. 1996, 17, 490-519.
(63) Perola, E.; Charifson, P. S. Conformational Analysis of Drug-
Like Molecules Bound to Proteins: An Extensive Study of
Ligand Reorganization upon Binding. J. Med. Chem. 2004, 47,
2499-2510.
(64) Dunitz, J. D. The Entropic Cost of Bound Water in Crystals and
Biomolecules. Science 1994, 264, 670-670.
(65) Dill, K. A. Dominant forces in protein folding. Biochemistry 1990,
29, 7133-7155.
(66) Fersht, A.; Shi, J. P.; Knill-Jones, J. W.; Lowe, D. M.; Wilkinson,
A. J.; et al. Hydrgen bonding and biological specificity analysed
by protein engineering. Nature 1985, 314, 235-238.
(67) Bartlett, P. A.; Marlowe, C. K. Evaluation of Intrinsic Binding
Energy from a Hydrogen Bonding Group in an Enzyme Inhibitor.
Science 1987, 235, 569-571.
(68) Tronrud, D. E.; Holden, H. M.; Matthews, B. W. Structure of
Two Thermolysin-Inhibitor Complexes That differ by a Single
Hydrogen Bond. Science 1987, 235, 571-574.
(69) Fersht, A. The hydrogen bond in molecular recognition. Trends
Biochem. Sci. 1987, 12, 301-304.
(70) Fersht, A. Relationships between Apparent Binding Energies
Measured in Site-Directed Mutagenesis Experiments and En-
ergetics of Binding and Catalysis. Biochemistry 1988, 27, 1577-
1580.
(71) Williams, D. H.; Searle, M. S.; Mackay, J. P.; Gerhard, U.;
Maplestone, R. A. Toward an estimation of binding constants
in aqueous solution: Studies of associations of vancomycin group
antibiotics. Proc. Natl. Acad. Sci. U.S.A. 1993, 90, 1172-1178.
(72) Connelly, P. R.; Aldape, R. A.; Bruzzese, F. J.; Chambers, S. P.;
Fitzgibbon, M. J.; et al. Enthalpy of hydrogen bond formation
in a protein-ligand binding reaction. Proc. Natl. Acad. Sci.
U.S.A. 1994, 91, 1964-1968.
(73) Abraham, M. H.; Duce, P. P.; Prior, D. V.; Barrat, D. G.; Morris,
J. J.; et al. Hydrogen Bonding. Part 9. Solute Proton Donor and
Proton Acceptor Scales for Use in Drug Design. J. Chem. Soc.,
Perkin Trans. 2 1989, 1355-1375.
(74) Tame, J. R. H. Scoring functions: A view from the bench. J.
Comput.-Aided Mol. Des. 1999, 13, 99-108.
(75) Davis, A. M.; Teague, S. J. Hydrogen Bonding, Hydrophobic
Interactions, and Failure of the Rigid Receptor Hypothesis.
Angew. Chem., Int. Ed. 1999, 38, 736-749.
(76) Kubinyi. Hydrogen Bonding, the Last Mystery in Drug Design?
Pharmacokinetic Optimization in Drug Research. Biological,
Physicochemical, and Computational Strategies; Helvetica Chim-
ica Acta and Wiley-VCH: Zu¨rich, Switzerland, 2001; pp 513-
524.
(39) Senderowicz, A. M. The Cell Cycle as a Target for Cancer
Therapy: Basic and Clinical Findings with the Small Molecule
Inhibitors Flavopiridol and UCN-01. Oncologist 2002, 7, 12-19.
(40) Lyne, P. D.; Kenny, P. W.; Cosgrove, D. A.; Deng, C.; Zabludoff,
S.; et al. Identification of Compounds with Nanomolar Binding
Affinity for Checkpoint Kinase-1 Using Knowledge-Based Vir-
tual Screening. J. Med. Chem. 2004, 47, 1962-1968.
(41) Kania, R. S.; Bender, S. L.; Borchardt, A.; Braganza, J. F.;
Cripps, S. J.; et al. Indazole compounds and pharmaceutical
compositions for inhibiting protein kinases and methods for their
use. Patent WO 0102369, 2001.
(42) Chen, P.; Luo, C.; Deng, Y.; Ryan, K.; Register, J.; et al. The 1.7
Å Crystal Structure of Human Cell Cycle Checkpoint Kinase
Chk1: Implications for Chk1 Regulation. Cell 2000, 100, 681-
692.
(43) Zhao, B.; Bower, M. J.; McDevitt, P. J.; Zhao, H.; Davis, S. T.;
et al. Structural Basis for Chk1 Inhibition by UCN-01. J. Biol.
Chem. 2002, 277, 46609-44615.
(45) Baurin, N.; Baker, R.; Richardson, C.; Chen, I.; Foloppe, N.; et
al. Drug-like annotation and duplicate analysis of a 23-supplier
chemical database totalling 2.7M compounds. J. Chem. Inf.
Comput. Sci. 2004, 44, 643-651.
(47) Johannsen, F.; Jorgensen, A.; Pedersen, E. B. Reactions of
Heterocyclic o-Aminonitriles with Acetic Formic Anhydride.
Chim. Scripta 1986, 26, 347-351.
(48) Toledo, L. M.; Lydon, N. B.; Elbaum, D. The Structure-Based
Design of ATP-Site Directed Protein Kinase Inhibitors. Curr.
Med. Chem. 1999, 6, 775-805.
(49) Noble, M. E.; Endicott, J. A.; Johnson, L. N. Protein Kinase
Inhibitors: Insights into Drug Design from Structure. Science
2004, 303, 1800-1805.
(50) Williams, D. H.; Mitchell, T. Latest developments in crystal-
lography and structure-based design of protein kinase inhibitors
as drug candidates. Curr. Opin. Pharmacol. 2002, 2, 567-573.
(51) Steiner, T. Donor and acceptor strengths in C-H‚‚‚O hydrogen
bonds quantified from crystallographic data of small solvent
molecules. New J. Chem. 1998, 1099-1103.
(52) Pierce, A. C.; Sandretto, K. L.; Bemis, G. W. Kinase Inhibitors
and the Case for CH‚‚‚O Hydrogen Bonds in Protein-Ligand
Binding. Proteins 2002, 49, 567-576.
(77) Williams, D. H.; Westwell, M. S. Aspects of weak interactions.
Chem. Soc. Rev. 1998, 27, 57-63.
(78) Sippl, M. J. Helmholtz Free Energy of Peptide Hydrogen Bonds
in Proteins. J. Mol. Biol. 1996, 260, 644-648.
(79) Gidofalvi, G.; Wong, C. F.; McCammon, J. A. Entropy Loss of
Hydroxyl Groups of Balanol upon Binding to Protein Kinase A.
J. Chem. Educ. 2002, 79, 1122-1126.
(80) Bo¨hm, H. J.; Brode, S.; Hesse, U.; Klebe, G. Oxygen and Nitrogen
in Competitive Situations: Which Is The Hydrogen-Bond Ac-
ceptor? Chem. -Eur. J. 1996, 2, 1509-1513.
(53) Desiraju, G. R.; T., S. The Weak Hydrogen Bond In Structural
Chemistry and Biology; Oxford Science Publications: New York,
1999.
(81) Honig, B.; Sharp, K.; Yang, A.-S. Macroscopic Models of Aqueous
Solutions: Biological and Chemical Applications. J. Phys. Chem.
1993, 97, 1101-1109.