R. A. Fernandes et al. / Tetrahedron Letters 49 (2008) 6341–6343
6343
Table 1
Oxa-Pictet Spengler reaction on 19 to give 9a and 9b
Entry
Reaction conditions
% Yield
9a:9b
1
2
3
(CH3O)2CHCH3 (2.0 equiv), BF3ꢁOEt2 (3.0 equiv), THF/Et2O (1:4), rt, 14 h
(CH3O)2CHCH3 (2.0 equiv), BF3ꢁOEt2 (3.0 equiv), THF/Et2O (1:4), rt, 1 h
(CH3O)2CHCH3 (2.0 equiv), BF3ꢁOEt2 (3.0 equiv), THF/Et2O (1:4), 0 °C, 2 h
92
84
78
32:68
36:64
43:57
The mixture of 9a:9b was easily separated by preparative TLC21
11. Tanada, Y.; Mori, K. Eur. J. Org. Chem. 2001, 4313.
12. Yang, H.; Lu, W.; Bao, J. X.; Aisa, H. A.; Cai, J. C. Chin. Chem. Lett. 2001, 12, 883.
13. (a) Clive, D. L. J.; Fletcher, S. P. Chem. Commun. 2003, 2464; (b) Clive, D. L. J.;
Fletcher, S. P.; Liu, D. J. Org. Chem. 2004, 69, 3282.
14. (a) Fernandes, R. A. Eur. J. Org. Chem. 2007, 5064; (b) Fernandes, R. A.
Tetrahedron: Asymmetry 2008, 19, 15; (c) Fernandes, R. A.; Chavan, V. P.
Tetrahedron Lett. 2008, 49, 3899.
15. Corey, E. J.; Fuchs, P. L. Tetrahedron Lett. 1972, 36, 3769.
16. (a) Dötz, K. H. Angew. Chem., Int. Ed. Engl. 1975, 14, 644; (b) Dötz, K. H.;
Tomuschat, P. Chem. Soc. Rev. 1999, 28, 187.
17. For oxa-Pictet Spengler reactions see: (a) Pyrek, J. S.; Achmatowicz, O., Jr.;
Zamojski, A. Tetrahedron 1977, 33, 673; (b) DeNinno, M. P.; Schoenleber, R.;
Perner, R. J.; Lijewski, L.; Asin, K. E.; Britton, D. R.; MacKenzie, R.; Kebabian, J.
W. J. Med. Chem. 1991, 34, 2561; (c) DeNinno, M. P.; Perner, R. J.; Morton, H. E.;
DiDomenico, S., Jr. J. Org. Chem. 1992, 57, 7115; (d) Masquelin, T.; Hengartner,
U.; Streith, J. Synthesis 1995, 780; (e) Masquelin, T.; Hengartner, U.; Streith, J.
Helv. Chim. Acta 1997, 80, 43; (f) Giles, G. F.; Rickards, R. W.; Senanayake, B. S. J.
Chem. Soc., Perkin Trans. 1 1998, 3949; (g) Contant, P.; Haess, M.; Riegl, J.;
Scalone, M.; Visnick, M. Synthesis 1999, 821; (h) Bianchi, D. A.; Rua, F.;
Kaufman, T. S. Tetrahedron Lett. 2004, 45, 411.
to give 9a22 (30%) and 9b23 (51%) from 19. Oxidation of 9a with
CAN produced (+)-eleutherin 1 {½a D25
ꢂ
+338 (c 0.25, CHCl3); natural
(+)-eleutherin 1 ½a D25
ꢂ
+346 (c 1.01, CHCl3)1} in 86% yield. Similarly,
oxidation of 9b with CAN gave (+)-allo-eleutherin 3 {½a D25
ꢂ
+65.6
(c 0.3, CHCl3), lit.2a
spectroscopic and analytical data of 1 were in full agreement with
those reported.8 (+)-Allo-eleutherin 3 was fully characterized by
spectroscopic and analytical methods.24
½
a 2D5
+45 (c 1.075, CHCl3)} in 89% yield. The
ꢂ
In summary, a short enantioselective synthesis of both (+)-ele-
utherin (8% overall yield) and (+)-allo-eleutherin (14% overall
yield) has been achieved in six steps (for both). The synthetic strat-
egy features an efficient combination of a Dötz annulation reaction
with a chiral alkyne and the oxa-Pictet Spengler reaction as the key
steps in the stereodivergent synthesis of both (+)-eleutherin and
the first enantioselective synthesis of (+)-allo-eleutherin. Since
(+)-allo-eleutherin is an enantiomer of (ꢀ)-(1R,3R)-isoeleutherin
2,8 it should have the (1S,3S) configuration. The synthesis of
(S)-(+)-2-(20-hydroxypropyl)-5-methoxy-1,4-naphthoquinone 17
entails the formal synthesis of (+)-nocardione B 5.11 Application
of this strategy to the synthesis of other related pyranonaphtho-
quinone natural products is in progress.
18. (a) Cameron, D. W.; Feutrill, G. I.; Pietersz, G. A. Aust. J. Chem. 1982, 35,
1481; (b) Pyrek, J., St.; Achmatowicz, O., Jr.; Zamojski, A. Tetrahedron 1977,
33, 673; (c) Li, T.; Ellison, R. H. J. Am. Chem. Soc. 1978, 100, 6263; (d)
Kometani, T.; Takeuchi, Y.; Yoshii, E. J. Org. Chem. 1983, 48, 2630; (e) Yoshii,
E.; Kometani, T.; Nomura, K.; Takeuchi, Y.; Odake, S.; Nagata, Y. Chem. Pharm.
Bull. 1984, 32, 4779; (f) Naruta, Y.; Uno, H.; Maruyama, K. Chem. Lett. 1982,
609.
19. Data for 16: Pale yellow solid; mp 143–144 °C; ½a D25
ꢀ71.5 (c 0.34, CHCl3); IR
ꢂ
(CHCl3):
m = 3138, 2968, 2928, 2835, 1627, 1603, 1509, 1463, 1388, 1333, 1284,
1250, 1115, 1072, 1045, 977, 927, 894, 863, 842, 761 cmꢀ1 1H NMR (400 MHz,
;
CDCl3/TMS): d 1.40 (d, 3H, J = 6.0 Hz, CHCH3), 1.69 (d, 3H, J = 5.2 Hz, CHCH3),
3.33 (m, 2H, CH2-Ar), 3.76 (m, 1H, CH2CHCH3), 3.94 (s, 3H, OCH3), 3.97 (s, 3H,
OCH3), 4.84 (q, 1H, J = 5.2 Hz, CHCH3), 6.56 (s, 1H, H-Ar), 6.85 (d, 1H, J = 7.7 Hz,
H-Ar), 7.40 (dd, 1H, J = 8.4, 8.0 Hz, H-Ar), 7.74 (d, 1H, J = 8.0 Hz, H-Ar); 13C NMR
(100 MHz, CDCl3/CHCl3): d 22.51 (CHCH3), 22.76 (CHCH3), 44.36 (CH2), 56.59
(OCH3), 57.22 (OCH3), 74.68 (CH), 103.50 (OOCHCH3), 106.34 (Ar), 109.32 (Ar),
114.88 (Ar), 116.2 (Ar), 126.61 (Ar), 127.15 (Ar), 131.43 (Ar), 148.15 (Ar),
152.83 (Ar), 157.09 (Ar); MS (I): m/e = 288 [M+] (100); Calcd for C17H20O4
(288.34): C, 70.81, H, 6.99. Found: C, 70.77; H, 7.28.
Acknowledgements
The authors are indebted to IRCC and the Department of Chem-
istry, IIT-Bombay, for financial support. The INSA Young Scientist
start-up support grant by INSA, New Delhi, is also acknowledged.
V.P.C. and A.B.I. are grateful to CSIR, New Delhi, for research
fellowships.
20. The diastereomer ratio was determined by 1H NMR.
21. All the mixtures in entries 1–3, Table 1, were mixed to give an average
9a:9b = 37:63 mixture and 85% yield. This on separation by preparative thin
layer chromatography (PTLC) gave 9a in 30% yield and 9b in 51% yield from 19.
These yields were taken into account while calculating the overall yield.
22. The spectroscopic and analytical data of 9a were in full agreement with those
reported.8b
References and notes
1. (a) Schmid, H.; Meijer, T. M.; Ebnöther, A. Helv. Chim. Acta 1950, 33, 595; (b)
Schmid, H.; Ebnöther, A.; Meijer, T. M. Helv. Chim. Acta 1950, 33, 1751.
2. For isolation see: (a) Schmid, H.; Ebnöther, A. Helv. Chim. Acta 1951, 34, 561. For
configuration see: (b) Schmid, H.; Ebnöther, A. Helv. Chim. Acta 1951, 34, 1041.
3. Bianchi, C.; Ceriotti, G. J. Pharm. Sci. 1975, 64, 1305.
4. (a) Chen, Z.; Huang, H.; Wang, C.; Li, Y.; Ding, J. Zhongcaoyao 1981, 12, 484; (b)
Ding, J.; Huang, H. Zhongcaoyao 1982, 13, 499.
5. Krishnan, P.; Bastow, K. F. Biochem. Pharmacol. 2000, 60, 1367.
6. Otani, T.; Sugimoto, Y.; Aoyagi, Y.; Igarashi, Y.; Furumai, T.; Saito, N.; Yamada,
Y.; Asao, T.; Oki, T. J. Antiobiot. 2000, 53, 337.
7. (a) Schmid, H.; Eisenhuth, W. Helv. Chim. Acta 1958, 41, 2021; (b) Webb, A. D.;
Harris, T. M. Tetrahedron Lett. 1977, 24, 2069; (c) Naruta, Y.; Uno, H.;
Maruyama, K. J. Chem. Soc., Chem. Commun. 1981, 1277; (d) Kometani, T.;
Yoshii, E. J. Chem. Soc., Perkin Trans. 1 1981, 1191; (e) Kometani, T.; Yoshii, E. J.
Chem. Soc., Perkin Trans. 1 1981, 1197; (f) Giles, R. G. F.; Green, I. R.; Hugo, V. I.;
Mitchell, P. R. K. J. Chem. Soc., Chem. Commun. 1983, 51; (g) Giles, R. G. F.; Green,
I. R.; Hugo, V. I.; Yorke, S. C.; Mitchell, P. R. K. J. Chem. Soc., Perkin Trans. 1 1984,
2383. (h) Kraus, G. A.; Molina, M. T.; Walling, J. A. J. Chem. Soc., Chem. Commun.
1986, 1568; (i) Uno, H. J. Org. Chem. 1986, 51, 350; (j) Kobayashi, K.; Uchida, M.;
Uneda, T.; Tanmatsu, M.; Morikawa, O.; Konishi, H. Tetrahedron Lett. 1998, 39,
7725; For a review see: (k) Brimble, M. A.; Nairn, M. R.; Prabaharan, H.
Tetrahedron 2000, 56, 1937.
8. (a) Tewierik, L. M.; Dimitriadis, C.; Donner, C. D.; Gill, M.; Willems, B. Org.
Biomol. Chem. 2006, 4, 3311; (b) Gibson, J. S.; Andrey, O.; Brimble, M. A.
Synthesis 2007, 2611.
9. Dimitriadis, C.; Gill, M.; Harte, M. F. Tetrahedron: Asymmetry 1997, 8, 2153.
10. (a) Hauser, F. M.; Rhee, R. P. J. Org. Chem. 1978, 43, 178; (b) Kraus, G. A.;
Sugimoto, H. Tetrahedron Lett. 1978, 2263.
23. Data for 9b: Pale yellow oil; ½a D25
ꢂ
+37.5 (c 1.2, CHCl3); IR (CHCl3): m = 3022,
2934, 2835, 1715, 1654, 1594, 1497, 1462, 1374, 1262, 1213, 1108, 1067, 1012,
988, 757, 669 cmꢀ1 1H NMR (400 MHz, CDCl3/TMS): d 1.40 (d, 3H, J = 6.1 Hz,
;
CHCH3), 1.64 (d, 3H, J = 6.7 Hz, CHCH3), 2.61 (dd, 1H, J = 16.8, 10.9 Hz, CHaxH),
3.08 (dd, 1H, J = 16.8, 3.4 Hz, CHeqH), 3.81 (s, 3H, OCH3), 3.85 (s, 3H, OCH3), 4.01
(s, 3H, OCH3), 4.15 (m, 1H, CH2CHCH3), 5.34 (q, 1H, J = 6.7 Hz, CHCH3), 6.84 (d,
1H, J = 7.2 Hz, H-Ar), 7.38 (dd, 1H, J = 8.0, 7.6 Hz, H-Ar), 7.66 (dd, 1H, J = 8.1,
1 Hz, H-Ar); 13C NMR (100 MHz, CDCl3/CHCl3):
d 20.89 (CHCH3), 22.26
(CHCH3), 30.75 (CH2), 56.15 (OCH3), 60.74 (OCH3), 62.03 (OCH3), 62.40 (CH),
69.00 (CH), 105.45 (Ar), 114.64 (Ar), 119.26 (Ar), 124.44 (Ar), 125.82 (Ar),
129.97 (Ar), 130.12 (Ar), 148.12 (Ar), 149.05 (Ar), 156.12 (Ar); MS (I): m/e = 303
[M++1] (100), 288 (5), 229 (2); Calcd for C18H22O4 (302.37): C, 71.50; H, 7.33.
Found: C, 71.41; H, 7.44.
24. Data for 3: Yellow needles; mp 168–170 °C; ½a D25
ꢂ
+65.6 (c 0.3, CHCl3); IR
m = 3016, 2923, 2852, 1717, 1657, 1586, 1470, 1375, 1256, 1216, 1054,
(CHCl3):
927, 760, 669 cmꢀ1 1H NMR (400 MHz, CDCl3/TMS): d 1.36 (d, 3H, J = 6.1 Hz,
;
CHCH3), 1.55 (d, 3H, J = 6.7 Hz, CHCH3), 2.27 (ddd, 1H, J = 18.9, 10.2, 2.1 Hz,
CHaxH), 2.72 (dd, 1H, J = 19.1, 3.5 Hz, CHeqH), 3.98 (m, 1H, CH2CHCH3), 4.01 (s,
3H, OCH3), 5.03 (q, 1H, J = 6.7 Hz, CHCH3), 7.29 (d, 1H, J = 8.5 Hz, H-Ar), 7.66
(dd, 1H, J = 8.1, 7.6 Hz, H-Ar), 7.76 (dd, 1H, J = 7.6, 1 Hz, H-Ar); 13C NMR
(100 MHz, CDCl3/CHCl3): d 19.87 (CHCH3), 21.62 (CHCH3), 29.62 (CH2), 56.56
(OCH3), 62.57 (CH), 67.52 (CH), 117.93 (Ar), 119.20 (Ar), 119.8 (Ar), 134.17 (Ar),
134.83 (Ar), 139.47 (Ar), 148.13 (Ar), 159.83 (Ar), 182.84 (C@O), 184.34 (C@O);
MS (I): m/e = 273 [M++1] (6), 243 (2), 229 (100), 201 (1.5); Calcd for C16H16O4
(272.3): C, 70.57; H, 5.92. Found: C, 70.25; H, 5.86.