12416 J. Phys. Chem. A, Vol. 114, No. 47, 2010
Kim et al.
(4) Durant, J. L.; Lafleur, A. L.; Busby, W. F.; Donhoffner, L. L.;
Penman, B. W.; Crespi, C. L. Mutat. Res. 1999, 446, 1–14.
(5) Violi, A.; D’Anna, A.; D’Alessio, A.; Sarofim, A. F. Chemosphere
2003, 51, 1047–1054.
(6) Violi, A.; D’Anna, A.; D’Alessio, A. Chem. Eng. Sci. 1999, 54,
3433–3442.
(7) Violi, A. J. Phys. Chem. A 2005, 109, 7781–7787.
(8) Homann, K. H.; Wagner, H. G. Proc. Combust. Inst. 1967, 11,
371–376.
(9) Crittenden, B. D.; Long, R. Combust. Flame 1973, 20, 359–368.
(10) Bockhorn, H.; Fetting, F.; Wenz, H. W. Ber. Bunsen-Ges. Phys.
Chem. 1983, 87, 1067–1073.
(11) Frenklach, M.; Clary, D. W.; Cardiner, W. C.; Stein, S. E. Proc.
Combust. Inst. 1984, 20, 887–901.
(12) Cole, J. A.; Bittner, J. D.; Longwell, J. P.; Howard, J. B. Combust.
Flame 1984, 56, 51–70.
(13) Westmoreland, P. R.; Dean, A. M.; Howard, J. B.; Longwell, J. P.
J. Phys. Chem. 1989, 93, 171–180.
(14) Marinov, N. M.; Pitz, W. J.; Westbrook, C. K.; Castaldi, M. J.;
Senkan, S. M. Combust. Sci. Technol. 1996, 116, 117–211.
(15) Wang, D.; Violi, A.; Kim, D. H.; Mullholland, J. A. J. Phys. Chem.
A 2006, 110, 4719–4725.
and naphthalene yields was observed around 775 °C, much
lower than that predicted by the computational studies.15,24,26-28
One possible explanation of this discrepancy is the suggestion
of Wang et al.15 that the inclusion of H abstraction reaction in
the calculation would greatly improve the formation rate of
naphthalene.
The loss of a methyl group in the CPD-to-indene pathway26-28
leads to methylcyclopentadiene formation, ring expansion to
form the observed cyclohexadienes, and then dehydrogenation
to form benzene.34,35 Similarly, naphthalene might also be
formed from indene via the observed methylindene and dihy-
dronaphthalene intermediates. Further PAH growth by addition
of cyclopentadienyl moieties was observed. Reaction of indene
and CPD produces fluorene, phenanthrene, and anthracene.26
Reaction of two indenes produces benzo[a]fluorene, benzo[b]-
fluorene, chrysene, benz[a]anthracene, and benzo[c]phenan-
threne.27 CPD-acenaphthylene reaction produces fluoranthene.16
(16) Wang, D.; Violi, A. J. Org. Chem. 2006, 71, 8365–8371.
(17) Marinov, N. M.; Pitz, W. J.; Westbrook, C. K.; Vincitore, A. M.;
Castaldi, M. J.; Senkan, S. M.; Melius, C. F. Combust. Flame 1998, 114,
192–213.
Conclusions
High selectivity for benzene, indene, and naphthalene prod-
ucts were observed in CPD pyrolysis over the temperature range
550-950 °C. A crossover of indene and naphthalene yields was
observed, as suggested in the computational studies. Although
not all of the intermediates expected on the basis of computa-
tional studies were detected, the experimental results support
the pyrolytic growth of PAH via CPDyl addition pathways at
temperatures below 900 °C.
(18) Lamprecht, A.; Atakan, B.; Kohse-Ho¨inghaus, K. Proc. Combust.
Inst. 2000, 28, 1817–1824.
(19) Gomez, A.; Sidebotham, G.; Glassman, I. Combust. Flame 1984,
58, 5845–5857.
(20) Spielmann, R.; Cramers, C. A. Chromatographia 1972, 5, 295–
300.
(21) Manion, J.; Louw, R. J. Phys. Chem. 1989, 93, 3563–3574.
(22) Friderichsen, A. V.; Shin, E.-J.; Evans, R. J.; Nimlos, M. R.; Dayton,
D. C.; Ellison, G. B. Fuel 2001, 80, 1747–1755.
(23) Miller, J. A. Proc. Combust. Inst. 1996, 26, 461–480.
(24) Melius, C. F.; Colvin, M. E.; Marinov, N. M.; Pitz, W. J.; Senkan,
S. M. Proc. Combust. Inst. 1996, 26, 685–692.
(25) Richter, H.; Benish, T. G.; Mazyar, O. A.; Green, W. H.; Howard,
J. B. Proc. Combust. Inst. 2000, 28, 2609–2618.
(26) Mulholland, J. A.; Lu, M.; Kim, D. H. Proc. Combust. Inst. 2000,
28, 2593–2599.
Acknowledgment. The support of the National Science
Foundation (collaborative research grant CTS-0210089) is
gratefully acknowledged.
(27) Lu, M.; Mulholland, J. A. Chemosphere 2001, 42, 625–633.
(28) Lu, M.; Mulholland, J. A. Chemosphere 2004, 55, 605–610.
(29) Butler, R. G.; Glassman, I. Proc. Combust. Inst. 2009, 32, 395–
402.
(30) Kislov, V. V.; Mebel, A. M. J. Phys. Chem. A 2007, 111, 9532–
9543.
Supporting Information Available: A schematic diagram
of the experimental apparatus; axial temperature profiles of the
quartz tube reactor. This material is available free of charge
(31) Kislov, V. V.; Mebel, A. M. J. Phys. Chem. A 2008, 112, 700–
716.
References and Notes
(32) Beach, D. B. IBM J. Res. DeV. 1990, 34, 795–805.
(33) Herring, A. M.; McKinnon, J. T.; Petrick, D. E.; Gneshin, K. W.;
Filley, J.; McCloskey, B. D. J. Anal. Appl. Pyrol. 2003, 66, 165–182.
(34) Madden, L. K.; Mebel, A. M.; Lin, M. C.; Melius, C. F. J. Phys.
Org. Chem. 1996, 9, 801–810.
(1) D’Anna, A.; Violi, A.; D’Alessio, A. Combust. Flame 2000, 121,
418–429.
(2) Violi, A.; Sarofim, A. F.; Truong, T. N. Combust. Flame 2001,
126, 1506–1515.
(3) Durant, J. L.; Busby, W. F.; Lafleur, A. L.; Penman, B. W.; Crespi,
C. L. Mutat. Res. 1996, 371, 123–157.
(35) Dubnikova, F.; Lifshitz, A. J. Phys. Chem. A 2002, 106, 8173–8183.
JP106749K