1,4-DIAMINOCYCLOHEXANE SYNTHESIS
291
TABLE 1
aminocyclohexane (8), was also favored. The degradation
products were partly further aminated (with ammonia or
some amines).
Influence of the Contact Time on the Amination of 1,4-Cyclo-
hexanediol (1, in Scheme 1) over a 95% Co–5% Fe Catalyst under
Otherwise Standard Conditions
CONCLUSIONS
Yield (% )
Contact time
Temperature
( C)
Conversion
(% )
An alternative catalytic route for the synthesis of 1,4-
diaminocyclohexane has been shown that is based on the
amination of 1,4-cyclohexanediol over a Co–Fe catalyst in
scNH3. The amination affords 67% yield at almost com-
plete conversion. The efficiency of the reaction can be fur-
ther improved by recycling the unreacted diol and amino
alcohol intermediate, reducing the amount of by-products
to ca. 3% . The high chemical efficiency combined with the
engineering advantages of continuous operation and easy
separation from the supercritical solvent and reactant am-
monia provides a good basis for industrial application of
the process.
1
[gs mol
]
2
3
By-products
30,000
40,000
60,000
20,000
30,000
40,000
60,000
165
165
165
195
195
195
195
70
76
93
21
32
9
6
3
46
42
29
67
55
54
52
3
2
55
26
42
43
47
99
100
100
100
3
1
the diamine yield at 195 C, despite of the complete con-
version of diol. The amount of by-products barely changed
when doubling the contact time from 30,000 to 60,000 gs
mol 1. Beside dimers and oligomers, degradation products
such as 7 and 8 (Scheme 1) could be identified in the prod-
uct mixture. Figure 2 illustrates the cumulative selectivity
to the amino alcohol (2) and diamine (3) as a function of
conversion, on the basis of the data in Fig. 1. The amination
selectivity has an optimum of 97% at 76% diol conversion.
The lower selectivity at low and high conversion is due to
the formation of dimers (4–6), oligomers, and degradation
products. At low conversion the dimer (5) was the main by-
product. At high conversion (and longer contact times) 2
and 3 were transformed to dimers (mainly 6) and insoluble
oligomers, and the generation of degradation products, e.g.,
ACKNOWLEDGMENT
Financial support from Lonza Ltd, Visp, Switzerland, is kindly acknowl-
edged.
REFERENCES
1. Roundhill, D. M., Chem. Rev. 92, 1 (1992).
2. Turcotte, M. G., and Johnson, T. A., in “Kirk–Othmer Encyclopedia of
Chemical Technology” (F. M. Mark, D. F. Othmer, C. G. Overberger,
and G. T. Seaborg, Eds.), Vol. 2, p. 369. Wiley, New York, 1992.
3. Mallat, T., and Baiker, A., in “Handbook of Heterogeneous Catalysis”
(G. Ertl, H. Kno¨zinger, and J. Weitkamp, Eds.), Vol. 5, p. 2334. VCH,
Weinheim, 1997.
4. Fischer, A., Mallat, T., and Baiker, A., Catal. Today 37, 167 (1997).
5. Vultier, R. E., Baiker, A., and Wokaun, A., Appl. Catal. 30, 167 (1987).
6. Kijenski, J., Niedzielski, P. J., and Baiker, A., Appl. Catal. 53, 107
(1989).
7. Baiker, A., in “Catalysis of Organic Reactions” (J. R. Kosak and
T. A. Johnson, Eds.), Vol. 53, p. 91. Dekker, New York, 1994.
8. Baiker, A., and Kijenski, J., Catal. Rev. Sci. Eng. 27, 653 (1985).
9. Kijenski, J., Burger, J., and Baiker, A., Appl. Catal. 11, 295 (1984).
10. Card, R. J., and Schmitt, J. L., J. Org. Chem. 46, 754 (1981).
´
11. Sirokma´n, G., Molna´r, A., and Barto´k, M., J. Mol. Catal. 19, 35
(1983).
´
12. Molna´r, A., Sirokma´n, G., and Barto´k, M., J. Mol. Catal. 19, 25 (1983).
13. Baiker, A., Chem. Rev. 99, 453 (1999).
14. Fischer, A., Mallat, T., and Baiker, A., Angew. Chem. Int. Ed. 38, 351
(1999).
15. Brake, L., U.S. Patent 3,636,108 (1977).
16. Rutter, H., Ruhl, T., Breitscheidel, B., Henkelmann, J., Henne, A., and
Wettling, T., U.S. Patent 5,773,657 (1998).
17. Primeaux, I., and Dudley, J., U.S. Patent 5,162,388 (1992).
18. Cheng, V. M., Farng, L. O., Horodysky, A. G., and Poole, R. J., U.S.
Patent 5,407,592 (1995).
19. Hellring, S. D., Chang, C. D., and Lutner, J. D., U.S. Patent 5,190,736
(1993).
20. Khokhar, A., and Siddik, Z. H., U.S. Patent 5,393,909 (1995).
21. Fischer, A., Maciejewski, M., Bu¨rgi, T., Mallat, T., and Baiker, A.,
submitted for publication.
FIG. 2. Influence of temperature on the cumulative selectivity to
4-aminocyclohexanol (2) and 1,4-diaminocyclohexane (3) over a 95%
Co–5% Fe catalyst; standard conditions.
22. Allamagny, P. (Ed.), “Encyclopedie de Gaz,” p. 951. L’Air Liquide,
Elsevier, Amsterdam, 1976.
23. Bassili, V., and Baiker, A., Appl. Catal. 70, 325 (1991).