28
H. Yang et al. / Applied Catalysis A: General 415–416 (2012) 22–28
Appendix A. Supplementary data
Supplementary data associated with this article can be found, in
References
[1] X.H. Gao, X.C. Lv, J. Xu, Kinet. Catal. 51 (2010) 394–397.
[2] I. Spiridon, R. Bodirlau, C.A. Teaca, Cent. Eur. J. Biol. 6 (2011) 388–396.
[3] V.N. Sheemol, I.R. Unni, C. Gopinathan, Indian J. Chem. Technol. 8 (2001)
298–300.
[4] T.B. Iyim, I. Acar, S. Oezguemues, J. Appl. Polym. Sci. 109 (2008) 2774–2780.
[5] M.C. Wang, M. Leitch, C.C. Xu, J. Ind. Eng. Chem. 15 (2009) 870–875.
[6] H. Hock, S. Lang, Ber. Dtsch. Chem. Ges. 77 (1944) 257–264.
[7] X.B. Wang, X.F. Zhang, Y. Wang, H. Liu, J.S. Qiu, J.Q. Wang, W. Han, K.L. Yeung,
ACS Catal. 1 (2011) 437–445.
[8] X.B. Wang, X.F. Zhang, H. Liu, K.L. Yeung, J.Q. Wang, Chem. Eng. J. 156 (2010)
562–570.
[9] B.B. Brodie, J. Axelrod, P.A. Shore, S. Udenfriend, J. Biol. Chem. 208 (1954)
741–750.
[10] S. Udenfriend, C.T. Clark, J. Axelrod, B.B. Brodie, J. Biol. Chem. 208 (1954)
731–739.
[11] H. Orita, T. Hayakawa, M. Shimizu, K. Takehira, J. Mol. Catal. 42 (1987)
99–103.
[12] T. Ohtani, S. Nishiyama, S. Tsuruya, M. Masai, J. Catal. 155 (1995)
158–162.
[13] S. Niwa, M. Eswaramoorthy, J. Nair, A. Raj, N. Itoh, H. Shoji, T. Namba, F.
Mizukami, Science 295 (2002) 105–107.
[14] T. Yokota, S. Sakaguchi, Y. Ishii, Adv. Synth. Catal. 344 (2002) 849–854.
[15] X.B. Wang, Y. Guo, X.F. Zhang, H. Liu, J. Wang, K.L. Yeung, Catal. Today 156
(2010) 288–294.
[16] Y. Guo, X.F. Zhang, H. Zou, H. Liu, J. Wang, K.L. Yeung, Chem. Commun. (2009)
5898–5900.
Fig. 8. The yield of phenol in aqueous acetic acid. Reaction conditions: Catalyst
0.105 g (0.05 mmol), TEMPO 0.156 g (1 mmol), ascorbic acid 0.9 g (5 mmol, for each
addition), benzene 0.78 g (10 mmol), 50% aqueous acetic acid 6.8 mL. 80 ◦C, 2 MPa
O2, 80 min (for each addition of ascorbic acid).
times, and the yield of phenol could reach up to 18.9% in 400 min
(Fig. 8).
[17] Y. Guo, X.B. Wang, X.F. Zhang, H.Y. Zou, H. Liu, J. Wang, K.L. Yeung, Catal. Today
156 (2010) 282–287.
4. Conclusions
[18] L.I. Kuznetsova, N.I. Kuznetsova, S.V. Koshcheev, V.A. Rogov, V.I. Zaikovskii, B.N.
Novgorodov, L.G. Detusheva, V.A. Likholobov, D.I. Kochubey, Kinet. Catal. 47
(2006) 704–714.
[19] N.I. Kuznetsova, L.I. Kuznetsova, V.A. Likholobov, G.P. Pez, Catal. Today 99
(2005) 193–198.
[20] T. Kusakari, T. Sasaki, Y. Iwasawa, Chem. Commun. (2004) 992–993.
[21] M. Tada, R. Bal, T. Sasaki, Y. Uemura, Y. Inada, S. Tanaka, M. Nomura, Y. Iwasawa,
J. Phys. Chem. C 111 (2007) 10095–10104.
[22] E. Hata, T. Takai, T. Yamada, T. Mukaiyama, Chem. Lett. (1994) 1849–1852.
[23] M. Tani, T. Sakamoto, S. Mita, S. Sakaguchi, Y. Ishii, Angew. Chem. Int. Ed. 44
(2005) 2586–2588.
[24] S. Yamaguchi, S. Sumimoto, Y. Ichihashi, S. Nishiyama, S. Tsuruya, Ind. Eng.
Chem. Res. 44 (2005) 1–7.
[25] Y.Y. Gu, X.H. Zhao, G.R. Zhang, H.M. Ding, Y.K. Shan, Appl. Catal. A: Gen. 328
(2007) 150–155.
[26] H.Q. Ge, Y. Leng, F.M. Zhang, J.R. Piao, C.J. Zhou, J. Wang, Sci. China Ser. B: Chem.
52 (2009) 1264–1269.
1. The oxidative dissociation of ascorbic acid happened in the
[(CH3)4N]4PMo11VO40/ascorbic acid/O2 catalytic system and
decreased ascorbic acid efficiency for the hydroxylation reaction
in acetonitrile. With TEMPO addition, the interaction of TEMPO
and ascorbic acid could restrain the oxidative dissociation of
ascorbic acid and increase the rate of the hydroxylation.
2. TEMPO can react quickly with ascorbic acid and generate ascor-
bic acid radicals and TEMPOH. TEMPO can be recycled in the
reaction through the reoxidation of TEMPOH. However, in aque-
ous acetic acid, catalytic assistance is needed for the recycling
process. Ascorbic acid radicals are more reactive than ascorbic
acid for the hydroxylation of benzene to phenol.
3. Aqueous acetic acid can protect ascorbic acid from oxidative dis-
sociation and TEMPO can also promote the rate of hydroxylation
in aqueous acetic acid.
[27] J.Q. Chen, S. Gao, J. Li, Y. Lv, Chin. J. Catal. 32 (2011) 1445–1450.
[28] G.A. Tsigdino, C.J. Hallada, Inorg. Chem. 7 (1968) 437–441.
[29] J.Q. Chen, S. Gao, J. Xu, Catal. Commun. 9 (2008) 728–733.
[30] J.J. Warren, J.M. Mayer, J. Am. Chem. Soc. 132 (2010) 7784–7793.
[31] J.J. Warren, J.M. Mayer, J. Am. Chem. Soc. 130 (2008) 7546–7547.
[32] C. Creutz, Inorg. Chem. 20 (1981) 4449–4452.
[33] R. Ben-Daniel, P. Alsters, R. Neumann, J. Org. Chem. 66 (2001) 8650–8653.
Acknowledgment
[34] A. Dijksman, I.W.C.E. Arends, R.A. Sheldon, Org. Biomol. Chem.
3232–3237.
1 (2003)
This work was supported by the National Basic Research Pro-
gram of China (973 Program, 2009CB623505).