W. Liu et al. / Tetrahedron: Asymmetry 16 (2005) 2525–2530
2529
190; (d) Reek, J. N. H.; de Groot, D.; Oosterom, G. E.;
Kamer, P. C. J.; van Leeuwen, P. W. N. M. Rev. Mol.
Biotechnol. 2002, 90, 159–181; (e) Twyman, L. J.; King, A.
S. H.; Martin, I. K. Chem. Soc. Rev. 2002, 31, 69–82; (f)
van Heerbeek, R.; Kamer, P. C. J.; van Leeuwen, P. W. N.
M.; Reek, J. N. H. Chem. Rev. 2002, 102, 3717–3756; (g)
Caminade, A.-M.; Maraval, V.; Laurent, R.; Majoral,
J.-P. Curr. Org. Chem. 2002, 6, 739–774; (h) Dahan, A.;
Portnoy, M. J. Polym. Sci. Part A: Polym. Chem. 2005, 43,
235–262.
3. Conclusion
In conclusion, a novel series of chiral dendritic N-mono-
sulfonyl 1,2-diamine ligands based on the phenyl-func-
tionalized 1,2-diamine have been designed and synthe-
sized in high yields with their ruthenium complexes
demonstrating higher reactivities when compared to
the monomeric catalyst with the same enantioselectivi-
ties. Moreover, better recyclable activities of the second
generation dendritic catalyst were observed when com-
pared with the polymer-supported catalysts,15b,d,e as
well as the dendritic catalysts derived from amino-func-
tionalized vicinal diamine5a by using the formic acid–tri-
ethylamine azeotrope as the hydrogen source in the
asymmetric transfer hydrogenation. It is notable that
the phenyl-functionalized dendritic 1,2-diamine ligands
can be selectively modified toward the development of
Ôfine-tunedÕ catalysts for the reduction of an extended
range of substrates, such as aromatic ketones, keto
esters, and olefins. A further interesting aspect of this
study is that such ligands can serve as a chiral
platform with which many types of reactions can be
carried out.
8. Fujii, A.; Hashiguchi, S.; Uematsu, N.; Ikariya, T.;
Noyori, R. J. Am. Chem. Soc. 1996, 118, 2521–2522.
9. For reduction of imines, see: (a) Uematsu, N.; Fujii, A.;
Hashiguchi, S.; Ikariya, T.; Noyori, R. J. Am. Chem. Soc.
1996, 118, 4916–4917; (b) Meuzelaar, G. J.; van Vliet, M.
C. A.; Maat, L.; Sheldon, R. A. Eur. J. Org. Chem. 1999,
9, 2315–2321.
10. For dynamic kinetic resolution, see: Mohar, B.; Valleix,
A.; Desmurs, J.-R.; Felemez, M.; Wagner, A.; Mioskow-
ski, C. Chem. Commun. 2001, 2572–2573.
11. For the reduction of keto esters, see: (a) Taran, F.;
Gauchet, C.; Mohar, B.; Meunier, S.; Valleix, A.; Renard,
´
P. Y.; Creminon, C.; Grassi, J.; Wagner, A.; Mioskowski,
ˇ
C. Angew. Chem., Int. Ed. 2002, 41, 124–127; (b) Sterk, D.;
Stephan, M. S.; Mohar, B. Tetrahedron: Asymmetry 2002,
ˇ
13, 2605–2608; (c) Sterk, D.; Stephan, M. S.; Mohar, B.
Tetrahedron Lett. 2004, 45, 535–537.
12. For reduction of C@C double bonds, see: (a) Chen, Y.-C.;
Xue, D.; Deng, J.-G.; Cui, X.; Zhu, J.; Jiang, Y.-Z.
Tetrahedron Lett. 2004, 45, 1555–1558; (b) Xue, D.; Chen,
Y. C.; Cui, X.; Wang, Q. W.; Zhu, J.; Deng, J. G. J. Org.
Chem. 2005, 70, 3584–3591.
13. For Michael addition, see: (a) Suzuki, T.; Torii, T.
Tetrahedron: Asymmetry 2001, 12, 1077–1081; (b) Watan-
abe, M.; Murata, K.; Ikariya, T. J. Am. Chem. Soc. 2003,
125, 7508–7509; (c) Watanabe, M.; Ikagawa, A.; Wang,
H.; Murata, K.; Ikariya, T. J. Am. Chem. Soc. 2004, 126,
11148–11149.
Acknowledgements
This work was financially supported by the National
Natural Science Foundation of China (Nos. 20372061,
203900507 and 20025205).
References
1. Knapen, J. W. J.; van der Made, A. W.; de Wilde, J. C.;
van Leeuwen, P. W. N. M.; Wijkens, P.; Grove, D. M.;
van Koten, G. Nature 1994, 372, 659–663.
2. Brunner, H.; Frst, J. Tetrahedron 1994, 50, 4303–4310.
3. For an excellent review on the nanofiltration technique in
dendritic catalyst recycling, see: Dijkstra, H. P.; van Klink,
G. P. M.; van Koten, G. Acc. Chem. Res. 2002, 35, 798–
810.
4. For selected reports on dendritic catalyst recycling by
precipitation, see: (a) Hu, Q.-S.; Pugh, V.; Sabat, M.; Pu,
L. J. Org. Chem. 1999, 64, 7528–7536; (b) Maraval, V.;
Caminade, A.-M.; Majoral, J.-P. Organometallics 2000,
19, 4025–4029; (c) Fan, Q.-H.; Chen, Y.-M.; Chen, X.-M.;
Jiang, D.-Z.; Xi, F.; Chan, A. S. C. Chem. Commun. 2000,
789–790; (d) Ji, B.; Yuan, Y.; Ding, K.; Meng, J. Chem.
Eur. J. 2003, 9, 5989–5996; (e) Deng, G.-J.; Yi, B.; Huang,
Y.-Y.; Tang, W.-J.; He, Y.-M.; Fan, Q.-H. Adv. Synth.
Catal. 2004, 346, 1440–1444.
5. (a) Chen, Y. C.; Wu, T. F.; Deng, J. G.; Liu, H.; Jiang, Y.
Z.; Choi, M. C. K.; Chan, A. S. C. Chem. Commun. 2001,
1488–1489; (b) Chen, Y. C.; Wu, T. F.; Jiang, L.; Deng, J.
G.; Liu, H.; Zhu, J.; Jiang, Y. Z. J. Org. Chem. 2005, 70,
1006–1010.
14. Hannedouche, J.; Clarkson, G. J.; Wills, M. J. Am. Chem.
Soc. 2004, 126, 986–987.
15. For the supported TsDPEN ligands functionalized at the
benzene rings, see: (a) Ma, Y.-P.; Liu, H.; Chen, L.; Zhu,
J.; Deng, J.-G. Org. Lett. 2003, 5, 2103–2106; (b) Li, X.;
Chen, W.; Hems, W.; King, F.; Xiao, J. Tetrahedron Lett.
2004, 45, 951–953; (c) Li, X.; Wu, X.; Chen, W.; Hancock,
F. E.; King, F.; Xiao, J. Org. Lett. 2004, 6, 3321–3324; at
arenesulfonyl groups, see: (d) ter Halle, R.; Schulz, E.;
Lemaire, M. Synlett 1997, 1257–1258; (e) Bayston, D. J.;
Travers, C. B.; Polywka, M. E. C. Tetrahedron: Asymme-
try 1998, 9, 2015–2018; (f) Bubert, C.; Blacker, J.; Brown,
S. M.; Crosby, J.; Fitzjohn, S.; Muxworthy, J. P.; Thorpe,
T.; Williams, J. M. J. Tetrahedron Lett. 2001, 42, 4037–
4039; (g) Chen, Y. C.; Wu, T. F.; Deng, J. G.; Liu, H.;
Cui, X.; Zhu, J.; Jiang, Y. Z.; Choi, M. C. K.; Chan, A. S.
C. J. Org. Chem. 2002, 67, 5301–5306; (h) Liu, P. N.; Gu,
P. M.; Wang, F.; Tu, Y. Q. Org. Lett. 2004, 6, 169–172; (i)
Liu, P.-N.; Deng, J.-G.; Tu, Y.-Q.; Wang, S.-H. Chem.
Commun. 2004, 2070–2071.
16. The synthesis of dendritic ligands 3, see: Liu, W.; Cui, X.;
Cun, L.; Wu, J.; Zhu, J.; Deng, J.; Fan, Q. Synlett 2005,
1591–1595.
´
17. (a) Chow, H.-F.; Mak, C. C. J. Org. Chem. 1997, 62,
5116–5127; (b) Yi, B.; Fan, Q.-H.; Deng, G.-J.; Li, Y.-M.;
Qiu, L.-Q.; Chan, A. S. C. Org. Lett. 2004, 6, 1361–1364.
18. Full characterization of ligand (R,R)-4d as one represen-
6. Hawker, C. J.; Frechet, J. M. J. J. Am. Chem. Soc. 1990,
112, 7638–7647.
7. For the comprehensive reviews on dendritic catalysts, see:
(a) Oosterom, G. E.; Reek, J. N. H.; Kamer, P. C. J.; van
Leeuwen, P. W. N. M. Angew. Chem., Int. Ed. 2001, 40,
1828–1849; (b) Astruc, D.; Chardac, F. Chem. Rev. 2001,
101, 2991–3024; (c) Crooks, R. M.; Zhao, M.; Sun, L.;
Chechik, V.; Yueng, L. K. Acc. Chem. Res. 2001, 34, 181–
22
tative: Mp 67–73 °C; ½aꢁD ¼ þ0.3 (c 2.24, CHCl3);
IR (KBr), mmax: 3492, 3449, 2871, 1596, 1450, 1157,
1
1050, 834, 737, 697 cmꢀ1; H NMR (300 MHz, CDCl3): d
7.41–7.30 (m, 82H), 7.00–6.94 (m, 6H), 6.74–6.57 (m,