COMMUNICATIONS
[
1] Recent reviews: a) M. A. Bennet, T. W. Matheson in Comprehensive
Organometallic Chemistry, Vol. 4 (Eds.: G. Wilkinson, F. G. A. Stone,
E. W. Abel), Pergamon, Oxford, 1982, pp. 931 ± 965; b) S. Murai, F.
Kakiuchi, S. Sekine, Y. Tanaka, A. Kamatani, M. Sonoda, N. Chatani,
Pure Appl. Chem. 1994, 66, 1527 ± 1534; c) S.-I. Murahashi, Angew.
Chem. 1995, 107, 2670 ± 2693; Angew. Chem. Int. Ed. Engl. 1995, 34,
Half-Metallocene Tantalum Complexes
Bearing Methyl Methacrylate (MMA) and
1,4-Diaza-1,3-diene Ligands as MMA
Polymerization Catalysts**
2
9
3
443 ± 2465; d) T. Naota, H. Takaya, S.-I. Murahashi, Chem. Rev. 1998,
8, 2599 ± 2660; e) S.-I. Murahashi, H. Takaya, Acc. Chem. Res. 2000,
3, 225 ± 233.
Yutaka Matsuo, Kazushi Mashima,* and Kazuhide Tani
Well-defined organometallic complexes were recently re-
ported to be single-site catalysts for the polymerization of
[
2] a) C. S. Cho, H. K. Lim, S. C. Shim, T. J. Kim, H.-J. Choi, Chem.
Commun. 1998, 995 ± 996; b) C. S. Cho, J. H. Kim, S. C. Shim,
Tetrahedron Lett. 2000, 41, 1811 ± 1814.
[1]
various monomers. While enolate complexes of zirconi-
um,[
2±5]
yttrium, and samarium,
[6]
[7, 8]
as well as aluminum
[
3] a) C. S. Cho, B. H. Oh, S. C. Shim, Tetrahedron Lett. 1999, 40, 1499 ±
1
500; b) C. S. Cho, B. H. Oh, S. C. Shim, J. Heterocycl. Chem. 1999, 36,
[9]
[10]
enolate complexes with Schiff base or porphyrin ligands,
have been reported to be active initiators for the polymer-
ization of polar olefinic monomers such as methyl acrylate
(MA) and methyl methacrylate (MMA), enolate complexes
of other transition metals have not been utilized. We sought a
new metal enolate complex that can initiate polymerization of
these polar monomers. Since Group 5 metals tolerate polar
functional groups and are less oxophilic than the metals of
Groups 3 and 4, we chose half-metallocene complexes of
tantalum, cationic alkyl and alkylidene derivatives of which
have already been applied in the living polymerization of
1
175 ± 1178; c) C. S. Cho, J. S. Kim, B. H. Oh, T.-J. Kim, S. C. Shim,
N. S. Yoon, Tetrahedron 2000, 56, 7747 ± 7750; d) C. S. Cho, B. H. Oh,
J. S. Kim, T.-J. Kim, S. C. Shim, Chem. Commun. 2000, 1885 ± 1886.
4] For transition metal-catalyzed amine-exchange reactions, see a) N.
Yoshimura, I. Moritani, T. Shimamura, S.-I. Murahashi, J. Am. Chem.
Soc. 1973, 95, 3038 ± 3039; b) S.-I. Murahashi, T. Hirano, T. Yano, J.
Am. Chem. Soc. 1978, 100, 348 ± 350; c) Y. Shvo, R. M. Laine, J. Chem.
Soc. Chem. Commun. 1980, 753 ± 754; d) B.-T. Khai, C. Concilio, G.
Porzi, J. Organomet. Chem. 1981, 208, 249 ± 251; e) B.-T. Khai, C.
Concilio, G. Porzi, J. Org. Chem. 1981, 46, 1759 ± 1760; f) A. Arcelli,
B.-T. Khai, G. Porzi, J. Organomet. Chem. 1982, 231, C31 ± C34; g) S.-I.
Murahashi, K. Kondo, T. Hakata, Tetrahedron Lett. 1982, 23, 229 ±
[
2
1
32; h) R. M. Laine, D. W. Thomas, L. W. Cary, J. Am. Chem. Soc.
982, 104, 1763 ± 1765; i) S.-I. Murahashi, N. Yoshimura, T. Tsumiya-
[11]
ethylene and stereoselective ring-opening metathesis poly-
merization of norbornene[ . Here we report a novel tantalum
initiator system and a new approach to generating catalyti-
cally active enolate species from monomer-coordinated com-
plexes. We prepared and characterized new half-metallocene
12]
ma, T. Kojima, J. Am. Chem. Soc. 1983, 105, 5002 ± 5011; j) C. W. Jung,
J. D. Fellmann, P. E. Garrou, Organometallics 1983, 2, 1042 ± 1044.
5] In a separate experiment, we confirmed that 1-(2-ethyl-3-methylqui-
nolin-6-yl)ethanone (0.20 mmol) reacted with tripropylamine
[
(
(
3
1.0 mmol) in the presence of RuCl
0.06 mmol) in dioxane (5 mL) at 1808C for 40 h to afford 1-(2-ethyl-
-methylquinolin-6-yl)pentan-1-one in 51% yield, and SnCl ´ 2H
proved to be unnecessary for the alkylation.
3 2 3
´ nH O (0.02 mmol) and PPh
complexes of tantalum with MMA and 1,4-diaza-1,3-buta-
diene (DAD)[
13, 14]
ligands, and the tantalum ± MMA com-
2
2
O
plexes, upon addition of one equivalent of AlMe , were found
3
[
[
6] For example, 1H NMR (400 MHz) analysis of the crude reaction
mixture of 1a and 2a, after usual workup prior to separation, showed
no signal for the methine proton of an a,a-dialkylated ketone.
to be catalysts for the polymerization of MMA.
Scheme 1 shows the preparation of tantalum ± MMA com-
5
7] Treatment of equimolar amounts of 1b and 2a under the usual
conditions gave 2-methyl-1-phenylhexan-1-one (3 f) in only 5% yield,
and the yield of 3 f was not improved at much longer reaction times.
8] M. Palucki, S. L. Buchwald, J. Am. Chem. Soc. 1997, 119, 11108 ±
plexes from [Cp*TaCl ] (1; Cp* h -C Me ). Reduction of 1
4
5
5
with sodium amalgam in toluene followed by addition of
MMA afforded the MMA complex [Cp*TaCl (h -supine-
4
2
[
[
MMA)] (2), which was alternatively prepared by treatment
1
1109.
III
[15]
9] J.-E. Bäckvall, R. L. Chowdhury, U. Karlsson, G. Wang in Perspectives
in Coordination Chemistry (Eds.: A. F. Williams, C. Floriani, A. E.
Merbach), VCH, New York, 1992, pp. 463 ± 486.
of the dinuclear Ta complex [{Cp*TaCl } ] (3) with MMA.
2 2
[
16]
The structure of 2 (Figure 1) is essentially the same as that
4
[17]
of [Cp*TaCl (h -supine-MA)].
Reaction of 2 with one
2
[
10] a) B. C. Hamann, J. F. Hartwig, J. Am. Chem. Soc. 1997, 119, 12382 ±
equivalent of the dilithium salt of 1,4-bis(p-methoxyphenyl)-
,4-diaza-1,3-butadiene (p-MeOC H -DAD) or the dilithium
1
1
1
2383; b) H. Muratake, A. Hayakawa, M. Natsume, Tetrahedron Lett.
997, 38, 7577 ± 7580; c) H. Muratake, M. Natsume, Tetrahedron Lett.
997, 38, 7581 ± 7582; d) J. hman, J. P. Wolfe, M. V. Troutman, M.
1
6
4
salt of 1,4-dicyclohexyl-1,4-diaza-1,3-butadiene (Cy-DAD) in
THF afforded the half-sandwich DAD complexes of tantalum
Palucki, S. L. Buchwald, J. Am. Chem. Soc. 1998, 120, 1918 ± 1919.
4
and 5, respectively. The 1H NMR spectra of 4 and 5
displayed two doublets at d 6.67 and 6.84 (J 3.4 Hz) for 4
[*] Prof. K. Mashima, Y. Matsuo, Prof. K. Tani
Department of Chemistry
Graduate School of Engineering Science
Osaka University
Toyonaka, Osaka 560-8531 (Japan)
Fax : (81)6-6850-6296
E-mail: mashima@chem.es.osaka-u.ac.jp
[
**] We thank Professor emeritus A. Nakamura (Osaka University) for
fruitful discussions. The present research was supported in part by a
grant-in-aid for Scientific Research on Priority Areas ªMolecular
Physical Chemistryº from the Ministry of Education, Science, Culture,
and Sports. Y.M. is a research fellow of the Japan Society for the
Promotion of Science, 1998 ± 2000.
Supporting information for this article is available on the WWW under
http://www.angewandte.com or from the author.
960
ꢀ WILEY-VCH Verlag GmbH, D-69451 Weinheim, 2001
1433-7851/01/4005-0960 $ 17.50+.50/0
Angew. Chem. Int. Ed. 2001, 40, No. 5