10.1002/cssc.202000576
ChemSusChem
COMMUNICATION
Cavallo, M. Rueping, O. El-Sepelgy, ChemSusChem 2019, 12, 3083-
3088; g) K. Polidano, B. D. W. Allen, J. M. J. Williams, L. C. Morrill,
ACS Catal. 2018, 8, 6440-6445; h) A. Mukherjee, D. Milstein, ACS
Catal. 2018, 8, 11435-11469; i) W. Liu, B. Sahoo, K. Junge, M. Beller,
Acc. Chem. Res. 2018, 51, 1858-1869; j) V. G. Landge, A. Mondal, V.
Kumar, A. Nandakumar, E. Balaraman, Org. Biomol. Chem. 2018, 16,
8175-8180; k) F. Kallmeier, R. Kempe, Angew. Chem. Int. Ed. 2018, 57,
46-60; l) G. A. Filonenko, R. van Putten, E. J. M. Hensen, E. A. Pidko,
Chem. Soc. Rev. 2018, 47, 1459-1483; m) B. Maji, M. Barman,
Synthesis 2017, 49, 3377-3393; n) F. Freitag, T. Irrgang, R. Kempe,
Chem. Eur. J. 2017, 23, 12110-12113.
reduced by the manganese hydride species C1-4 through
transition state TS3 (18.9 kcal/mol) to furnish the α,β-saturated
ketone as the final product. DFT studies suggested that the RDS
should the dehydrogenation of the alcohol substrates, which is in
good accordance with the deuterium-labeling experiments and
the observed KIE effect.
In summary, we have developed an efficient and green
approach to access diverse functionalized ketones via borrowing
hydrogen strategy, with sustainable primary and secondary
alcohols as starting materials, using a phosphine-free pincer
type NHC-Mn catalyst. This sustainable approach displays high
activity and selectivity, and broad substrate scope of various
primary and secondary alcohols under mild reaction conditions
by using a low catalyst loading, a catalytic amount of cheap
base, and t-amyl alcohol solvent at relatively mild temperature.
Mechanistic studies suggested an outer-sphere mechanism for
this non-bifunctional pincer NHC-Mn system and the
dehydrogenation of the secondary alcohol substrates plays a
vital role in the rate-limiting step.
[5] For selected examples and reviews, see: a) J. Sklyaruk, J. C. Borghs, O.
El-Sepelgy, M. Rueping, Angew. Chem. Int. Ed. 2019, 58, 775-779; b) A.
Bruneau-Voisine, L. Pallova, S. Bastin, V. César, J.-B. Sortais, Chem.
Commun. 2019, 55, 314-317; c) N. R. Bennedsen, R. L. Mortensen, S.
Kramer, S. Kegnæs, J. Catal. 2019, 371, 153-160; d) L. Rakers, F.
Schäfers, F. Glorius, Chem. Eur. J. 2018, 24, 15529-15532; e) L. M.
Kabadwal, J. Das, D. Banerjee, Chem. Commun. 2018, 54, 14069-
14072; f) X. N. Cao, X. M. Wan, F. L. Yang, K. Li, X. Q. Hao, T. Shao, X.
Zhu, M. P. Song, J. Org. Chem. 2018, 83, 3657-3668; g) C. B. Reddy,
R. Bharti, S. Kumar, P. Das, ACS Sustainable Chem. Eng. 2017, 5,
9683-9691; h) P. Piehl, M. Pena-Lopez, A. Frey, H. Neumann, M. Beller,
Chem. Commun. 2017, 53, 3265-3268; i) L. Guo, X. Ma, H. Fang, X. Jia,
Z. Huang, Angew. Chem. Int. Ed. 2015, 54, 4023-4027; j) M. S. Kwon,
N. Kim, S. H. Seo, I. S. Park, R. K. Cheedrala, J. Park, Angew. Chem.
Int. Ed. 2005, 44, 6913-6915; k) K. Taguchi, H. Nakagawa, T.
Hirabayashi, S. Sakaguchi, Y. Ishii, J. Am. Chem. Soc. 2004, 126, 72-
73.
Keywords: alcohol · borrowing hydrogen · N-heterocyclic
carbene · manganese · alkylation· pincer
[6] For selected examples and reviews, see: a) J. Rana, V. Gupta, E.
[1] For selected examples and reviews, see: a) T. Irrgang, R. Kempe, Chem.
Rev. 2019, 119, 2524-2549; b) M. B. Dambatta, K. Polidano, A. D.
Northey, J. M. J. Williams, L. C. Morrill, ChemSusChem 2019, 12, 2345-
2349; c) L. Bettoni, S. Gaillard, J.-L. Renaud, Org. Lett. 2019, 21, 8404-
8408; d) G. Zhang, T. Irrgang, T. Dietel, F. Kallmeier, R. Kempe, Angew.
Chem. Int. Ed. 2018, 57, 9131-9135; e) W. Ma, S. Cui, H. Sun, W. Tang,
D. Xue, C. Li, J. Fan, J. Xiao, C. Wang, Chem. Eur. J. 2018, 24, 13118-
13123; f) A. Corma, J. Navas, M. J. Sabater, Chem. Rev. 2018, 118,
1410-1459; g) F. Huang, Z. Liu, Z. Yu, Angew. Chem. Int. Ed. 2016, 55,
862-875; h) X. Quan, S. Kerdphon, P. G. Andersson, Chem.Eur. J.
2015, 21, 3576-3579; i) Y. Obora, ACS Catal. 2014, 4, 3972-3981; j) Y.
Li, D. Xue, W. Lu, C. Wang, Z.-T. Liu, J. Xiao, Org. Lett. 2014, 16, 66-
69; k) C. Gunanathan, D. Milstein, Science 2013, 341, 1229712; l) G.
Guillena, D. J. Ramón, M. Yus, Angew. Chem. Int. Ed. 2007, 46, 2358-
2364.
Balaraman, Dalton Trans. 2019, 48, 7094-7099
; b) J. Das, M.
Vellakkaran, D. Banerjee, J. Org. Chem. 2019, 84, 769-779; c) L.
Bettoni, C. Seck, M. D. Mbaye, S. Gaillard, J.-L. Renaud, Org. Lett.
2019, 21, 3057-3061; d) S. P. Midya, J. Rana, J. Pitchaimani, A.
Nandakumar, V. Madhu, E. Balaraman, ChemSusChem 2018, 11,
3911-3916; e) Y. K. Jang, T. Krückel, M. Rueping, O. El-Sepelgy, Org.
Lett. 2018, 20, 7779-7783; f) J. Das, K. Singh, M. Vellakkaran, D.
Banerjee, Org. Lett. 2018, 20, 5587-5591; g) S. Chakraborty, P. Daw, Y.
Ben David, D. Milstein, ACS Catal. 2018, 8, 10300-10305; h) M. K.
Barman, A. Jana, B. Maji, Adv. Synth. Catal. 2018, 360, 3233-3238; i) G.
Zhang, J. Wu, H. Zeng, S. Zhang, Z. Yin, S. Zheng, Org. Lett. 2017, 19,
1080-1083; j) C. Seck, M. D. Mbaye, S. Coufourier, A. Lator, J.-F.
Lohier, A. Poater, T. R. Ward, S. Gaillard, J.-L. Renaud, ChemCatChem
2017, 9, 4410-4416; k) M. Peña-López, P. Piehl, S. Elangovan, H.
Neumann, M. Beller, Angew. Chem. Int. Ed. 2016, 55, 14967-14971; l)
N. Deibl, R. Kempe, J. Am. Chem. Soc. 2016, 138, 10786-10789; m) S.
Elangovan, J.-B. Sortais, M. Beller, C. Darcel, Angew. Chem. Int. Ed.
2015, 54, 14483-14486.
[2] a) F.A. Carey, R.J .Sundberg, Advanced Organic Chemistry Part B:
Reactions and Synthesis, 5th ed., Springer, New York, 2007, pp. 1–62;
b) Modern Carbonyl Chemistry (Eds.: J. Otera), Wiley-VCH, Weinheim,
2000; c) D. Caine in Comprehensive Organic Chemistry, Vol. 3 (Eds.: B.
M. Trost, I. Fleming,G .Pattenden), Pergamon, Oxford, 1991, pp. 1–63.
[3] For selected examples and reviews, see: a) S. Genc, S. Gunnaz, B.
Cetinkaya, S. Gulcemal, D. Gulcemal, J. Org. Chem. 2018, 83, 2875-
2881; b) S. Shee, B. Paul, D. Panja, B. C. Roy, K. Chakrabarti, K.
Ganguli, A. Das, G. K. Das, S. Kundu, Adv. Synth. Catal. 2017, 359,
3888-3893; c) R. Mamidala, S. Samser, N. Sharma, U. Lourderaj, K.
Venkatasubbaiah, Organometallics 2017, 36, 3343-3351; d) P. Liu, R.
Liang, L. Lu, Z. Yu, F. Li, J. Org. Chem. 2017, 82, 1943-1950; e) G.
Chelucci, Coord. Chem. Rev. 2017, 331, 1-36; f) C. Schlepphorst, B.
Maji, F. Glorius, ACS Catal. 2016, 6, 4184-4188; g) D. Shen, D. L.
Poole, C. C. Shotton, A. F. Kornahrens, M. P. Healy, T. J. Donohoe,
Angew. Chem. Int. Ed. 2015, 54, 1642-1645; h) D. Wang, K. Zhao, C.
Xu, H. Miao, Y. Ding, ACS Catal. 2014, 4, 3910-3918; i) S. Ogawa, Y.
Obora, Chem. Commun. 2014, 50, 2491-2493; j) L. Guo, Y. Liu, W. Yao,
X. Leng, Z. Huang, Org. Lett. 2013, 15, 1144-1147; k) Y. Iuchi, Y.
Obora, Y. Ishii, J. Am. Chem. Soc. 2010, 132, 2536-2537.
[7] S. Elangovan, J. Neumann, J. B. Sortais, K. Junge, C. Darcel, M. Beller,
Nat. Commun. 2016, 7, 12641.
[8] X.-B. Lan, Z. Ye, M. Huang, J. Liu, Y. Liu, Z. Ke, Org. Lett. 2019, 21,
8065-8070.
[9] a) S. Michlik, R. Kempe, Nature Chem. 2013, 5, 140; b) C. O. Tuck, E.
Pérez, I. T. Horváth, R. A. Sheldon, M. Poliakoff, Science 2012, 337,
695-699; c) T. P. Vispute, H. Zhang, A. Sanna, R. Xiao, G. W. Huber,
Science 2010, 330, 1222-1227.
[10] a) S. Thiyagarajan, C. Gunanathan, J. Am. Chem. Soc. 2019, 141,
3822-3827; b) B. Pandey, S. Xu, K. Ding, Org. Lett. 2019, 21, 7420-
7423; c) M. V. Jiménez, J. Fernández-Tornos, F. J. Modrego, J. J.
Pérez-Torrente, L. A. Oro, Chem. Eur. J. 2015, 21, 17877-17889.
[11] N. Deibl, R. Kempe, Angew. Chem. Int. Ed. 2017, 56, 1663-1666.
[12] O. El-Sepelgy, E. Matador, A. Brzozowska, M. Rueping,
ChemSusChem 2019, 12, 3099-3102.
[13] T. Liu, L. Wang, K. Wu, Z. Yu, ACS Catal. 2018, 8, 7201-7207.
[14] a) M. Schlagbauer, F. Kallmeier, T. Irrgang, R. Kempe, Angew. Chem.
Int. Ed. 2020, 59, 1485-1490; b) A. Kaithal, P. van Bonn, M. Hölscher,
W. Leitner, Angew. Chem. Int. Ed. 2020, 59, 215-220; c) A. Kaithal, L.-L.
Gracia, C. Camp, E. A. Quadrelli, W. Leitner, J. Am. Chem. Soc. 2019,
141, 17487-17492.
[4] For selected examples and reviews, see: a) V. Yadav, V. G. Landge, M.
Subaramanian, E. Balaraman, ACS Catal. 2020, 10, 947-954; b) M.
Subaramanian, S. P. Midya, P. M. Ramar, E. Balaraman, Org. Lett.
2019, 21, 8899-8903; c) B. G. Reed-Berendt, K. Polidano, L. C. Morrill,
Org. Biomol. Chem. 2019, 17, 1595-1607; d) S. S. Gawali, B. K. Pandia,
C. Gunanathan, Org. Lett. 2019, 21, 3842-3847; e) J. C. Borghs, M. A.
Tran, J. Sklyaruk, M. Rueping, O. El-Sepelgy, J. Org. Chem. 2019, 84,
7927-7935; f) J. C. Borghs, L. M. Azofra, T. Biberger, O. Linnenberg, L.
[15] S. S. Gawali, B. K. Pandia, S. Pal, C. Gunanathan, ACS Omega 2019,
4, 10741-10754.
This article is protected by copyright. All rights reserved.