ChemComm
Communication
This work was supported by the Programs of National 973
(2011CB935900), NSFC (51231003), and MOE (B12015 and
IRT13R30) and Tianjin City (13JCQNJC06400).
Notes and references
1 B. Dunn, H. Kamath and J. M. Tarascon, Science, 2011, 334, 928.
2 F. Cheng, J. Liang, Z. Tao and J. Chen, Adv. Mater., 2011, 23, 1695.
3 Y. Lu, L. Wang, J. Cheng and J. B. Goodenough, Chem. Commun.,
2012, 48, 6544.
4 H. Pan, Y. Hu and L. Chen, Energy Environ. Sci., 2013, 6, 2338.
5 Z. Hu, L. Wang, K. Zhang, J. Wang, F. Cheng, Z. Tao and J. Chen,
Angew. Chem., Int. Ed., 2014, 53, 12794.
¨
6 M. Guignard, C. Didier, J. Darriet, P. Bordet, E. Elkaım and
C. Delmas, Nat. Mater., 2012, 12, 74.
7 N. Yabuuchi, M. Kajiyama, J. Iwatate, H. Nishikawa, S. Hitomi,
R. Okuyama, R. Usui, Y. Yamada and S. Komaba, Nat. Mater., 2012, 11, 512.
8 W. Duan, Z. Zhu, H. Li, Z. Hu, K. Zhang, F. Cheng and J. Chen,
J. Mater. Chem. A, 2014, 2, 8668.
9 J. Qian, Y. Chen, L. Wu, Y. Cao, X. Ai and H. Yang, Chem. Commun.,
2012, 48, 7070.
10 L. Xiao, Y. Cao, J. Xiao, W. Wang, L. Kovarik, Z. Nie and J. Liu, Chem.
Commun., 2012, 48, 3321.
11 A. Darwiche, C. Marino, M. T. Sougrati, B. Fraisse, L. Stievano and
L. Monconduit, J. Am. Chem. Soc., 2012, 134, 20805.
12 M. Armand, S. Grugeon, H. Vezin, S. Laruelle, P. Ribiere, P. Poizot
and J. M. Tarascon, Nat. Mater., 2009, 8, 120.
13 Y. Liang, Z. Tao and J. Chen, Adv. Energy Mater., 2012, 2, 742.
14 Z. Song and H. Zhou, Energy Environ. Sci., 2013, 6, 2280.
15 Y. L. Liang, P. Zhang and J. Chen, Chem. Sci., 2013, 4, 1330.
16 W. Huang, Z. Zhu, L. Wang, S. Wang, H. Li, Z. Tao, J. Shi, L. Guan
and J. Chen, Angew. Chem., Int. Ed., 2013, 52, 9162.
17 M. Zhou, L. Zhu, Y. Cao, R. Zhao, J. Qian, X. Ai and H. Yang, RSC
Adv., 2012, 2, 5495.
Fig. 3 (a) Typical discharge and charge profiles of Na2DBQ at various
current densities. (b) Cycle performance of Na2DBQ at a 1 C rate.
18 W. Deng, X. Liang, X. Wu, J. Qian, Y. Cao, X. Ai, J. Feng and H. Yang,
Sci. Rep., 2013, 3, 2671.
19 L. Zhu, Y. Shen, M. Sun, J. Qian, Y. Cao, X. Ai and H. Yang, Chem.
Commun., 2013, 49, 11370.
20 Z. Song, T. Xu, M. L. Gordin, Y. Jiang, I. T. Bae, Q. Xiao, H. Zhan,
J. Liu and D. Wang, Nano Lett., 2012, 12, 2205.
21 Y. Liang, P. Zhang, S. Yang, Z. Tao and J. Chen, Adv. Energy Mater.,
2013, 3, 600.
22 S. Wang, L. Wang, Z. Zhu, Z. Hu, Q. Zhao and J. Chen, Angew. Chem.,
Int. Ed., 2014, 53, 5892.
density for long-term cycling. As shown in Fig. 3b, after the
first activation process, Na2DBQ can preserve 81% of the
capacity from the 2nd cycle (236 mA h gÀ1) to the 100th
cycle (192 mA h gÀ1). Remarkably, the capacity can remain at
181 mA h gÀ1 even after 300 cycles.
Na2DBQ in addition to exhibiting relatively high voltage as
anode material, which would result in low energy density in full
cells, shows high capacity, good cyclability and high rate
capability. It should be pointed out that no extra treatment
such as surface modification29,32 is needed to gain the present
electrode performance. More importantly, Na2DBQ possesses
advantages of low cost, renewability, and environmentally-
benign synthesis. Therefore, Na2DBQ holds promise as anode
material for SIBs.
23 Z. Song, Y. Qian, X. Liu, T. Zhang, Y. Zhu, H. Yu, M. Otani and
H. Zhou, Energy Environ. Sci., 2014, 7, 4077.
24 K. Chihara, N. Chujo, A. Kitajou and S. Okada, Electrochim. Acta,
2013, 110, 240.
25 M. Yao, K. Kuratani, T. Kojima, N. Takeichi, H. Senoh and
T. Kiyobayashi, Sci. Rep., 2014, 4, 3650.
26 W. Luo, M. Allen, V. Raju and X. Ji, Adv. Energy Mater., 2014, DOI:
10.1002/aenm.201400554.
27 H. Wang, S. Yuan, D. Ma, X. Huang, F. Meng and X. Zhang, Adv.
Energy Mater., 2014, 4, DOI: 10.1002/aenm.201301651.
28 A. Choi, Y. K. Kim, T. K. Kim, M. S. Kwon, K. T. Lee and H. R. Moon,
J. Mater. Chem. A, 2014, 2, 14986.
In summary, the disodium salt of 2,5-dihydroxy-1,4-benzo-
quinone was prepared through a simple one-pot solution
method using commercial available raw materials and found
to be suitable as anode material for SIBs for the first time.
Without any modification, Na2DBQ can operate at an average
discharge voltage of B1.2 V with good electrochemical perfor-
mance, including high capacity (B265 mA h gÀ1 at 0.1 C), a
long cycle life (up to 300 cycles at 1 C), and high rate capability
(160 mA h gÀ1 at a 5 C rate). These results shed light on
the application of organic carbonyl compounds as electrode
materials for SIBs.
29 L. Zhao, J. Zhao, Y. Hu, H. Li, Z. Zhou, M. Armand and L. Chen, Adv.
Energy Mater., 2012, 2, 962.
30 Y. Park, D. S. Shin, S. H. Woo, N. S. Choi, K. H. Shin, S. M. Oh,
K. T. Lee and S. Y. Hong, Adv. Mater., 2012, 24, 3562.
31 A. Abouimrane, W. Weng, H. Eltayeb, Y. Cui, J. Niklas, O. Poluektov
and K. Amine, Energy Environ. Sci., 2012, 5, 9632.
32 C. Luo, Y. Zhu, Y. Xu, Y. Liu, T. Gao, J. Wang and C. Wang, J. Power
Sources, 2014, 250, 372.
33 J. Xiang, C. Chang, M. Li, S. Wu, L. Yuan and J. Sun, Cryst. Growth
Des., 2008, 8, 280.
34 H. Li, W. Duan, Q. Zhao, F. Cheng, J. Liang and J. Chen, Inorg. Chem.
Front., 2014, 1, 193.
35 S. Wang, L. Wang, K. Zhang, Z. Zhu, Z. Tao and J. Chen, Nano Lett.,
2013, 13, 4404.
This journal is ©The Royal Society of Chemistry 2014
Chem. Commun.