Please d oC hn eo mt Ca do mj u ms t margins
Page 14 of 71
COMMUNICATION
Journal Name
triphosphate unit of ATP and the pyridinium near the p-xylylene ring
in 1 (Figure 4). Based on the above NMR data, the adenine moiety of
ATP molecule is closed to TPE in the cavity of 1, while triphosphate
unit prefers to p-xylylene and neighboring pyridinium rings, which is
consistent with the result of NOESY spectra (Figure S77). On the
Notes and references
DOI: 10.1039/C9CC00599D
1
F. Diederich, P. J. Stang and R. R. Tykwinski, Modern
Supramolecular Chemistry: Strategies for Macrocycle
Synthesis. Wiley-VCH Verlag GmbH Co. KGaA,
Weinheim, 2008
G. W. Gokel, W. M. Leevy and M. E. Weber, Chem. Rev., 2004,
04, 2723-2750.
&
.
2
other hand, the 1:1 host-guest stoichiometry and binding constant (K
a
1
4
-1
=
1.17 × 10 M ) were determined by ITC (Figure S78). In addition,
3
4
5
G. Chen and M. Jiang, Chem. Soc. Rev., 2011, 40, 2254-2266.
D.-S. Guo and Y. Liu, Chem. Soc. Rev., 2012, 41, 5907-5921.
J. Lagona, P. Mukhopadhyay, S. Chakrabarti and L. Isaacs,
Angew. Chem. Int. Ed., 2005, 44, 4844-4870.
the limit of detection of the host 1 for ATP was calculated as 1.89
μmol (Figure S79). Similarly, ADP and AMP were quantitatively
accommodated within cyclophane 1 to give 1:1 host-guest complexes
1
6
7
8
Z. Liu, S. K. M. Nalluri and J. F. Stoddart, Chem. Soc. Rev.,
by the H NMR and ITC. ADP and AMP were bound by 1 with
2
017, 46, 2459-2478.
3
-1
3
-1
moderate binding constants of 5.07 × 10 M and 1.09 ×10 M ,
respectively (Figures S80-S83). Compared the host-guest interactions
of three nucleotides with 1, their binding ability gradually strengthen,
accompanying with the increase of the number of phosphate (Tables
M. Xue, Y. Yang, X. Chi, Z. Zhang and F. Huang, Acc. Chem.
Res., 2012, 45, 1294-1308.
(a) M. T. Nguyen, M. D. Krzyaniak, M. Owczarek, D. P. Ferris,
M. R. Wasielewski and F. J. Stoddart, Angew. Chem. Int. Ed.,
2
017, 56, 5795-5800; (b) W. W. Porter, T. P. Vaid and A. L.
1
and S2). All ESI-MS spectra of 1•ATP, 1•ADP and 1•AMP showed
the formation of 1:1 host-guest complexes, respectively (Figure S84-
6). The results indicated that cyclophane 1 can selectively recognize
Rheingold, J. Am. Chem. Soc., 2005, 127, 16559-16566.
9
1
C. Cheng, P. R. McGonigal, S. T. Schneebeli, H. Li, N. A.
Vermeulen, C. Ke and J. F. Stoddart, Nat. Nanotech., 2015, 10
547-553.
0 (a) E. J. Dale, N. A. Vermeulen, M. Juríček, J. C. Barnes, R.
M. Young, M. R. Wasielewski and J. F. Stoddart, Acc. Chem.
Res., 2016, 49, 262-273; (b) H. Y. Gong, B. M. Rambo, E.
8
,
ATP molecule through both electrostatic and π-π interactions.
However, the weak binding behavior between 2 and adenosine
1
derivatives was confirmed by the H NMR and UV-vis (Figures S87-
S92), probably because the large cavity of 2 is not fit with adenine
ring.
Karnas, V. M. Lynch and J. L. Sessler, Nat Chem, 2010,
06-409; (c) H. Y. Gong, B. M. Rambo, E. Karnas, V. M.
Lynch, K. M. Keller and J. L. Sessler, J. Am. Chem. Soc., 2011,
33, 1526-1533.
2,
4
a
Table 1. Binding constants between 1-2 and guests
.
1
1
1
1 J. Sun, Z. Liu, W. G. Liu, Y. Wu, Y. Wang, J. C. Barnes, K. R.
Hermann, W. A. Goddard, III, M. R. Wasielewski and J. F.
Stoddart, J. Am. Chem. Soc., 2017, 139, 12704-12709.
2 A. Trabolsi, A. C. Fahrenbach, S. K. Dey, A. I. Share, D. C.
Friedman, S. Basu, T. B. Gasa, N. M. Khashab, S. Saha, I.
Aprahamian, H. A. Khatib, A. H. Flood and J. F. Stoddart,
Chem. Commun., 2010, 46, 871-873.
-
1
Host
Guest
HPTS
HPTS
Trp
ATP
ADP
AMP
Binding Constant (K
a
, M )
8
1
2
1
1
1
(4.88 ± 1.95) × 10
(1.42 ± 0.98) × 10
(1.21 ± 0.04) × 10
(1.17 ± 0.12) × 10
(5.07 ± 0.28) × 10
(1.09 ± 0.16) × 10
9
3
4
3
3
13 J. C. Barnes, E. J. Dale, A. Prokofjevs, A. Narayanan, I. C.
Gibbs-Hall, M. Juríček, C. L. Stern, A. A. Sarjeant, Y. Y.
Botros, S. I. Stupp and J. F. Stoddart, J. Am. Chem. Soc., 2015,
1
a
Determined by ITC.
1
37, 2392-2399.
In conclusion, we have designed and synthesized two new cationic
cyclophanes (1-2) containing tetraphenylethene and bipyridinium
moieties. Determined by their X-ray crystal structures, asymmetrical
1
4 C. Cheng, P. R. McGonigal, S. T. Schneebeli, H. Li, N. A.
Vermeulen, C. Ke and J. F. Stoddart, Nat. Nanotech., 2015, 10
547-553.
,
cyclophane 1 possesses a trapezoid-like and smaller cavity whereas 15 Q. Chen, J. Sun, P. Li, I. Hod, P. Z. Moghadam, Z. S. Kean, R.
Q. Snurr, J. T. Hupp, O. K. Farha and J. F. Stoddart, J. Am.
Chem. Soc., 2016, 138, 14242-14245.
6 J. Mei, N. L. C. Leung, R. T. K. Kwok, J. W. Y. Lam and B.
Z. Tang, Chem. Rev., 2015, 115, 11718-11940.
symmetrical cyclophane 2 possesses a flat rectangle-like and larger
cavity. Their host-guest behaviours have been investigated by H
NMR, UV-vis, fluorescence and ITC experiments. In aqueous media,
1
1
two cyclophanes have fluorescence quenching effect on the 17 (a) J. B. Xiong, H. T. Feng, J. P. Sun, W. Z. Xie, D. Yang, M.
fluorescence indicator HPTS when forming 1:1 host-guest complexes
H. Liu and Y. S. Zheng, J. Am. Chem. Soc., 2016, 138, 11469-
11472; (b) S. Song and Y. S. Zheng, Org. Lett., 2013, 15, 820-
8
9
through π-π and electrostatic interactions with strong affinity (10 ~10
8
23; (c) C. Zhang, Z. Wang, L. X. Tan, T. L. Zhai, S. Wang,
-
1
M ). More interestingly, 1 exhibited a highly-selective recognition for
B. Tan, Y. S. Zheng, X. L. Yang and H. B. Xu, Angew. Chem.,
Int. Ed., 2015, 54, 9244-9248.
tryptophan and ATP (~2 times to ADP, ~10 times to AMP) due to its
proper size of cavity and good water-solubility. We anticipate that this 18 X. Yan, H. Wang, C. E. Hauke, T. R. Cook, M. Wang, M. L.
kind of cationic cyclophane can also be synthesized and modified with
other functional linkers, affording the ability to tune the cavity, host-
guest and photophysical properties of these cationic macrocycles,
which may find utility in applications such as not only biosensor for
detecting biological analytes (e.g. DNA) but also supramolecular
building blocks for constructing molecular knots in near future.
This work was supported by National Natural Science
Foundation of China (21771145 and 21472149 to L.C.,
Saha, Z. Zhou, M. Zhang, X. Li, F. Huang and P. J. Stang, J.
Am. Chem. Soc., 2015, 137, 15276-15286
9 X. Yan, T. R. Cook, P. Wang, F. Huang and P. J. Stang, Nat.
Chem., 2015, 7, 342-348.
0 E. Persch, O. Dumele and F. Diederich, Angew. Chem., Int. Ed.,
2015, 54, 3290-3327.
21 A. L. Spek, Acta Cryst. 2015, C71, 9-18.
2 P. P. Neelakandan, M. Hariharan and D. Ramaiah, J. Am.
Chem. Soc., 2006, 128, 11334-11335.
3 Q. Lin, Y.-Q. Fan, P.-P. Mao, L. Liu, J. Liu, Y.-M. Zhang, H.
Yao, and T.-B. Wei, Chem. Eur. J., 2018, 24, 777-783.
1
2
2
2
21402151 to Y.Z.).
4
| J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins