D. Y. Kim et al. / Tetrahedron Letters 42 (2001) 6299–6301
6301
Acknowledgements
63, 9572; (e) O’Donnell, M. J.; Delgado, F.; Hostettler, C.;
Schwesinger, R. Tetrahedron Lett. 1998, 39, 8775.
10. (a) Corey, E. J.; Xu, F.; Noe, M. C. J. Am. Chem. Soc.
1997, 119, 12414; (b) Corey, E. J.; Bo, Y.; Busch-Petersen,
J. J. Am. Chem. Soc. 1998, 120, 13000; (c) Corey, E. J.;
Noe, M. C.; Xu, F. Tetrahedron Lett. 1998, 39, 5347; (d)
Horikawa, M.; Busch-Petersen, J.; Corey, E. J. Tetra-
hedron Lett. 1999, 39, 3843; (e) Corey, E. J.; Zhang, F.-Y.
Org. Lett. 1999, 1, 1287; (f) Zhang, F.-Y.; Corey, E. J. Org.
Lett. 2000, 2, 1097; (g) Corey, E. J.; Zhang, F.-Y. Angew.
Chem., Int. Ed. 1999, 38, 1931; (h) Lygo, B.; Wainwright,
P. G. Tetrahedron Lett. 1997, 38, 8595; (i) Lygo, B.;
Wainwright, P. G. Tetrahedron Lett. 1998, 39, 1599; (j)
Lygo, B.; Crosby, J.; Peterson, J. A. Tetrahedron Lett.
1999, 40, 8671; (k) Lygo, B.; Wainwright, P. G. Tetra-
hedron 1999, 55, 6289.
This research was supported by research grants from
the Korea Science and Engineering Foundation (2001-
1-12300-006-1).
References
1. For recent reviews and monographs, see: (a) Leonard, J.
Contemp. Org. Synth. 1994, 1, 387; (b) Perlmutter, P.
Conjugate Addition Reactions in Organic Synthesis; Perga-
mon: Oxford, 1992; (c) Rossiter, B. E.; Swingle, N. M.
Chem. Rev. 1992, 92, 771.
2. (a) Dieter, R. K.; Alexander, C. W.; Nice, L. E. Tetra-
hedron 2000, 56, 2767; (b) Park, Y. S.; Weisenburger, G.
A.; Beak, P. J. Am. Chem. Soc. 1997, 199, 10537; (c) Beak,
P.; Lee, W. K. J. Org. Chem. 1993, 58, 1109; (d) Shawe,
T. T.; Meyers, A. I. J. Org. Chem. 1991, 56, 2751; (e)
Patrocinio, V. L.; Costa, P. R. R.; Correia, C. R. D.
Synthesis 1994, 474; (f) Sawamura, H.; Hamashima, H.;
Ito, Y. J. Am. Chem. Soc. 1992, 114, 8295.
3. (a) Arai, T.; Sasai, H.; Aoe, K.; Okamura, K.; Date, T.;
Shibasaki, M. Angew. Chem., Int. Ed. Engl. 1996, 35, 104;
(b) Funabashi, K.; Saida, Y.; Kanai, M.; Arai, T.; Sasai,
H.; Shibasaki, M. Tetrahedron Lett. 1998, 30, 7557; (c)
Shimizu, S.; Ohori, K.; Arao, T.; Sasai, H.; Shibasaki, M.
J. Org. Chem. 1998, 63, 7547; (d) Kim, Y. S.; Matsunaga,
S.; Das, J.; Sekine, A.; Ohshima, T.; Shibasaki, M. J. Am.
Chem. Soc. 2000, 122, 6506; (e) Matsunaga, S.; Ohshima,
T.; Shibasaki, M. Tetrahedron Lett. 2000, 40, 8473.
4. (a) Yamaguchi, M.; Igarashi, Y.; Reddy, R. S.; Shiraishi,
T.; Hirama, M. Tetrahedron 1997, 53, 11223; (b)
Yamaguchi, M.; Shiraishi, T.; Igarashi, Y.; Hirama, M.
Tetrahedron Lett. 1994, 25, 823; (c) Yamaguchi, M.;
Shiraishi, T.; Hirama, M. J. Org. Chem. 1996, 61, 3520; (d)
Hanessian, S.; Pham, V. Org. Lett. 2000, 2, 2975.
5. (a) Narasimhan, S.; Balakumar, V. R.; Radhakrishnan, V.
Tetrahedron Lett. 2001, 42, 719; (b) Sundarajan, G.;
Prabagaran, N. Org. Lett. 2001, 3, 389.
11. To a suspension of cinchonidine (2.94 g, 10 mmol) in
toluene (70 mL) was added 3,5-di-tert-butyl-4-methoxy-
benzyl bromide (4.38 g, 14 mmol), and the mixture was
stirred at reflux for 4 h. The reaction mixture was cooled
at room temperature, evaporated, and the residue was
recrystallized from diethyl ether/CH2Cl2 to give the
product as a dark brown solid. Purification of the residue
by flash chromatography (93:7, dichloromethane:
methanol) afforded the desired product N-(4-methoxy-3,5-
di-tert-butylbenzyl)cinchonidinium bromide (91%, 5.57 g)
as a brown solid. To a suspension of N-(3,5-di-tert-butyl-
4-methoxybenzyl)cinchonidinium bromide (3.03 g, 5.0
mmol) in 40 mL of CH2Cl2 was added allyl bromide (0.64
mL, 7.5 mmol) and 2.8 mL of 50% of aq. KOH (25.0
mmol). The resulting mixture was stirred for 5 h. The
mixture was diluted with 40 mL of water and extracted
with CH2Cl2 (3×40 mL). The combined organic extracts
were dried over MgSO4, filtered and concentrated in
vacuo. The residue was purified by chromatography on
silica gel (93:7, dichloromethane:methanol) to give product
4 (92%, 2.98 g) as a yellow solid. [h]2D5 −142.5 (c 2, CHCl3);
mp 220–221°C; IR (film, cm−1) 3407, 3000, 2949, 1704,
1625, 1596, 1567, 1510, 1502, 1491, 1470, 1454, 1400, 1350,
1210. 1115, 1070, 1010; 1H NMR (CDCl3, 300 MHz) l
1.47–1.50 (s, 19H), 2.09–2.17 (m, 3H), 2.63 (s, 1H),
3.34–3.47 (m, 3H), 3.75 (s, 3H), 4.01 (m, 1H), 4.28 (m, 2H),
4.64 (d, J=11.5 Hz, 2H), 5.01 (d, J=8.4 Hz, 1H), 5.05 (d,
J=10.5 Hz, 1H), 5.32–5.43 (m, 3H), 5.77 (m, 1H), 6.18 (m,
1H), 6.23 (s, 1H), 6.31 (d, J=11.5 Hz, 1H), 7.70 (s, 3H),
7.80 (t, J=7.4 Hz, 1H), 7.93 (m, 1H), 8.14 (d, J=8.39 Hz,
1H), 8.71 (d, J=8.48 Hz, 1H), 8.97 (d, J=4.39 Hz, 1H);
13C NMR (CDCl3, 50 MHz) l 20.99, 22.54, 25.28, 27.02,
31.99, 35.92, 37.77, 42.30, 51.04, 59.39, 60.31, 62.72, 64.34,
65.73, 70.30, 115.55, 118.40, 119.17, 120.04, 121.14, 124.40,
125.10, 129.10, 129.85, 130.28, 132.37, 132.47, 136.29,
139.88, 144.82, 148.40, 149.40, 161.18; MS (EI) m/z 567,
470, 394, 268, 167.
6. Kawara, A.; Taguchi, T. Tetrahedron Lett. 1994, 35, 8805.
7. Perrard, T.; Plaquevent, L.-C.; Desmurs, J.-R.; Hebrault,
D. Org. Lett. 2000, 2, 2959.
8. (a) Dehmlow, E. V.; Dehmlow, S. S. Phase-Transfer
Catalysis, 3rd ed.; VCH: Weinheim, 1993; (b) Goldberg,
Y. Phase-Transfer Catalysis: Selected Problems and Appli-
cation; Gordon & Breach Science: Reading, 1992; (c)
Starks, C. M.; Liotta, C. L.; Halpern, M. Phase-Transfer
Catalysis: Fundamentals, Applications, and Industrial Per-
spectives; Chapman & Hall: New York, 1994; (d) Shioiri,
T. In Handbook of Phase-Transfer Catalysis; Sasson, Y.;
Neumann, R., Eds. Chiral phase-transfer catalysis. Blackie
Academic & Professional: London, 1997; Chapter 14; (e)
O’Donnell, M. J. In Catalytic Asymmetric Synthesis;
Ojima, I., Ed. Asymmetric phase-transfer reactions. Wiley-
VCH: New York, 2000; Chapter 10.
12. General procedure for Michael addition of malonate to
chalcones: A mixture of dibenzyl malonate (0.11 mL, 0.45
mmol), K2CO3 (0.16 g, 2.0 mmol), chiral cinchonidinium
salt 4 (18.0 mg, 0.03 mmol), and chalcone (0.3 mmol) in
toluene (2 mL) was stirred at room temperature for 14–20
h. The mixture was diluted with water (10 mL) and
extracted with ethyl acetate (2×10 mL). The combined
organic layers were dried over MgSO4, filtered, concen-
trated, and purified by flash chromatography (silica gel,
ethyl acetate:hexane=1:5) to afford Michael adduct.
9. (a) Oku, M.; Arai, S.; Katayama, K.; Shioiri, T. Synlett
2000, 493; (b) Arai, S.; Shirai, Y.; Ishida, T.; Shioiri, T.
Tetrahedron 1999, 55, 6375; (c) Arai, S.; Hamaguchi, S.;
Shioiri, T. Tetrahedron Lett. 1998, 39, 2997; (d) Arai, S.;
Nakayama, K.; Hatano, K.; Shioiri, T. J. Org. Chem. 1998,