8164 J. Phys. Chem. B, Vol. 114, No. 24, 2010
Campbell et al.
higher diffusion coefficients in [C1C4Im][NTf2] (187.5 µm2/s) when
compared to those in [C1C1C4Im][NTf2] (97 µm2/s), meaning that
diffusion of CYD in [C1C4Im][NTf2] is 1.9 times faster than in
[C1C1C4Im][NTf2]. Since the diffusion coefficient is inversely
proportional to the viscosity of the medium, the values obtained
are in agreement with the Stokes-Einstein relation, since the
ratio of measured viscosities of both ionic liquids at R ) 0.5
η(CYD-[C1C1C4Im][NTf2])/η(CYD-[C1C4Im][NTf2]) is also
1.9. The diffusion coefficient of gases is also expected to vary
inversely with the viscosity of the medium. These results
indicate that the difference in the rate of both ligand exchange
and hydrogenation of CYD with [Rh(COD)(PPh3)2]NTf2 in
[C1C4Im][NTf2] and [C1C1C4Im][NTf2] can be attributed to the
difference in viscosity of both ionic liquids, hence the mobility
of the molecules in solution.
Acknowledgment. A.P. acknowledges the postdoctoral grant
by the project ANR CALIST and P.C. acknowledges the Ph.D.
grant attributed by the Ministe`re de l’Enseignement Supe´rieur
et de la Recherche, France.
Figure 11. Spatial distribution functions around the C2 carbon of the
cations in CYD-[C1C4Im][NTf2] (left) and CYD-[C1C1C4Im][NTf2]
(right) at R ) 0.5. Above and below are different views of the same
iso-surfaces. In white is plotted the iso-surface corresponding to a local
density of twice the average density of CR of CYD. In red is plotted
the iso-surface corresponding to a local density of 4 times the average
Supporting Information Available: Determination of the
conversion and the composition of the reaction mixture by
GC. UV-vis spectra of [Rh(COD)(PPh3)2]NTf2 and
[Rh(CYD)(PPh3)2]NTf2, ROESY and DOSY NMR pulse se-
-
density of oxygen atoms from the NTf2 anion.
1
quences, H NMR shifts and ROESY NMR spectra of the
TABLE 2: Density and Viscosity, at 298.15 K and
Atmospheric Pressure, of Mixtures of CYD-[C1C4Im][NTf2]
and CYD-[C1C1C4Im][NTf2] at R ) 0.5
mixture of CYD in [C1C4Im][NTf2] and [C1C1C4Im][NTf2]. This
material is available free of charge via the Internet at http://
pubs.acs.org.
xIL
R
F (g cm-3
)
η (mPa s)
CYD-[C1C4Im][NTf2]
References and Notes
1.000
0.667
0.000
0.498
1.4375
1.3597
48.45
24.87
(1) Wasserscheid, P.; Welton, T. Ionic Liquids in Synthesis; Wiley
VCH: Weinheim, Germany, 2008.
CYD-[C1C1C4Im][NTf2]
(2) Parvulescu, V. I.; Hardacre, C. Chem. ReV. 2007, 107, 2615.
(3) Dyson, P. J.; Zhao, D. Hydrogenation. Multiphase Homogeneous
Catalysis; Wiley-VCH: Weinheim, 2005; Vol. 2, pp 494.
(4) Olivier-Bourbigou, H.; Vallee, C. Multiphase Homogeneous Ca-
talysis; Wiley-VCH: Weinheim, 2005; Vol. 2, pp 413-431.
(5) Hintermair, U.; Gutel, T.; Slawin, A. M. Z.; Cole-Hamilton, D. J.;
Santini, C. C.; Chauvin, Y. J. Organomet. Chem. 2008, 693, 2407.
(6) Dupont, J.; Suarez, P. A. Z. Phys. Chem. Chem. Phys. 2006, 8,
2441.
(7) Dupont, J.; Suarez, P. A. Z.; De Souza, R. F.; Burrow, R. A.;
Kintzinger, J.-P. Chem.sEur. J. 2000, 6, 2377.
(8) Lachwa, J.; Bento, I.; Duarte, M. T.; Canongia Lopes, J. N.; Rebelo,
L. P. N. Chem. Commun. 2006, 2445.
(9) Gutel, T.; Santini, C. C.; Padua, A. A. H.; Fenet, B.; Chauvin, Y.;
Canongia Lopes, J. N.; Bayard, F.; Costa Gomes, M. F.; Pensado, A. S. J.
Phys. Chem. B 2009, 113, 170.
(10) Mele, A.; Romano, G.; Giannone, M.; Ragg, E.; Fronza, G.; Raos,
G.; Marcon, V. Angew. Chem., Int. Ed. 2006, 45, 1123.
(11) Padua, A. A. H.; Costa Gomes, M. F.; Canongia Lopes, J. N. A.
Acc. Chem. Res. 2007, 40, 1087.
(12) Triolo, A.; Russina, O.; Bleif, H.-J.; Di Cola, E. J. Phys. Chem. B
2007, 111, 4641.
(13) Canongia Lopes, J. N.; Padua, A. A. H. J. Phys. Chem. B 2006,
110, 3330.
(14) Canongia Lopes, J. N.; Costa Gomes, M. F.; Padua, A. A. H. J.
Phys. Chem. B 2006, 110, 16816.
(15) Hunt, P. A. J. Phys. Chem. B 2007, 111, 4844.
(16) Magna, L.; Chauvin, Y.; Niccolai, G. P.; Basset, J.-M. Organo-
metallics 2003, 22, 4418.
(17) Schrock, R. R.; Osborn, J. A. J. Am. Chem. Soc. 1976, 98, 4450.
(18) Blesic, M.; Canongia Lopes, J. N.; Padua, A. A. H.; Shimizu, K.;
Costa Gomes, M. F.; Rebelo, L. P. N. J. Phys. Chem. B 2009, 113, 7631.
(19) Izatt, R. M.; Terry, R. E.; Haymore, B. L.; Hansen, L. D.; Dalley,
N. K.; Avondet, A. G.; Christensen, J. J. J. Am. Chem. Soc. 1976, 98, 7620.
(20) Liu, Y. F.; Sturtevant, J. M. Protein Sci. 1995, 4, 2559.
(21) Briggner, L. E.; Wadso, I. J. Biochem. Biophys. Methods 1991,
22, 101–118.
1.000
0.662
0.000
0.510
1.4177
1.3442
105.00
47.13
both steps are twice as fast in 1-butyl-3-methylimidazolium
bis(trifluoromethylsulfonyl)imide, [C1C4Im][NTf2], than in 1-bu-
tyl-2,3-dimethylimidazolium bis(trifluoromethylsulfonyl)imide,
[C1C1C4Im][NTf2]. The rate-determining step in both ionic
liquids is the hydrogenation of CYD step.
Molecular dynamics simulations and NMR experiments
indicate that in both ILs, for a molar ratio CYD/IL equal to
0.5, CYD is solvated preferentially in lipophilic regions (in close
proximity to the alkyl side chains of the cations) as already
observed for saturated hydrocarbons and the methyl group of
toluene. In addition, in [C1C1C4Im][NTf2] the probability of
finding CYD near the C2 of the cation is higher than in
[C1C4Im][NTf2], in agreement with the shorter CYD-
[C1C1C4Im] distances determined by ROESY NMR. On the
other hand, a higher solubility of CYD in [C1C4Im][NTf2] and
smaller positive enthalpies of mixing for the CYD-[C1C4Im]-
[NTf2] system in comparison with CYD-[C1C1C4Im][NTf2]
indicate more favorable interactions between CYD and the
[C1C4Im] cation than with the [C1C1C4Im] cation. These
thermodynamic factors concur with the differences in catalytic
activity, although they cannot fully explain the differences
observed. Association between macroscopic thermodynamic
information, thermophysical data, and microscopic structural
information is necessary to fully explain the differences in
reactivity found in both IL media.
(22) Cutting, B.; Ghose, R.; Bodenhausen, G. J. Magn. Reson. 1999,
138, 326.
(23) Canongia Lopes, J. N.; Deschamps, J.; Padua, A. A. H. J. Phys.
Chem. B 2004, 108, 2038.
Pure [C1C1C4Im][NTf2] has a higher viscosity than pure
[C1C4Im][NTf2], and the same relative values are observed in
the mixtures with CYD. These differences in viscosity induce