Please do not adjust margins
ChemComm
Page 4 of 4
COMMUNICATION
Journal Name
1
006, 106, 5344−5386.
2M. M. Haley, Pure Appl. Chem., 2008, 80, 519−532.
3L. A. Baldwin, J. W. Crowe, M. D. Shannon, C. P. Jaroniec
and P. L. McGrier, Chem. Mater., 2015, 27, 6169−6172.
three-electrode method, and the detailed protocols are
depicted in the Supporting Information (Figure S39). Reversible
oxidation and reduction potentials of GDYLC12 were
approximately 0.11 V and −1.19 V in the range of −2.0 ~ 2.0 V,
while those of compound 7 were approximately 0.20 V and
2
DOI: 10.1039/D0CC05959E
1
1
14J. W. Crowe, L. A. Baldwin and P. L. McGrier, J. Am. Chem.
Soc., 2016, 138, 10120−10123.
1
−1.06 V. The energy levels of the highest and lowest occupied
5I. Hisaki, S. Nakagawa, N. Ikenaka, Y. Imamura, M.
Katouda, M. Tashiro, H. Tsuchida, T. Ogoshi, H. Sato, N.
Tohnai and M. Miyata, J. Am. Chem. Soc., 2016, 138,
molecular orbital (HOMO and LUMO) were calculated,
ox
according to the formulae EHOMO = − (Eonset − E Fc/Fc+ + 4.8) eV,
red
E
E
LUMO = − (Eonset
− E Fc/Fc+ + 4.8) eV and ΔEcaled = ELUMO −
6
617−6628.
HOMO.3
8,39
The HOMO and LUMO energy values of GDYLC12
16K. Tahara, C. A. Johoson II, T. Fujita, M. Sonoda, F. C. D.
Schryver, S. D. Feyter, M. M. Haley and Y. Tobe,
Langmuir, 2007, 23, 10190−10197.
1
1
1
were found to be −4.80 eV and −3.50 eV with an optical band
gap of 1.30 eV, while HOMO and LUMO energy values of
compound 7 were found to be about −4.89 eV and −3.63 eV
with an optical band gap of 1.26 eV. Hence, the experimental
results indicated that GDYLC12 possessed a narrow optical
band gap. Compared with compound 7, GDYLC12 exhibited an
enhanced HOMO and LUMO energy level, and a slightly
broader energy band gap, which was ascribed to the larger
conjugation system of GDYLC12.
7M. Mas-Torrent and C. Rovira, Chem. Rev., 2011, 111,
833−4856.
4
8E. Moulin, J.-J. Cid and N. Giuseppone, Adv. Mater., 2013,
25, 477−487.
9F. J. M. Hoeben, P. Jonkheijm, E. W. Meijer and A. P. H. J.
Schenning, Chem. Rev., 2005, 105, 1491−1546.
0M. O’Neill and S.M. Kelly, Adv. Mater., 2011, 23, 566−584.
1E.-K. Fleischmann and R. Zentel, Angew. Chem. Int. Ed.,
2
2
2
013, 52, 8810−8827.
22S. Sergeyev, W. Pisula and Y. H. Geerts, Chem. Soc. Rev.,
007, 36, 1902–1929.
3
In conclusion, we reported a C -symmetric GDY-core discotic
2
LC molecule bearing six symmetrical wedge-shaped 3,4,5-
tris(dodecyloxy)benzoate groups with 18 flexible alkyl chains.
This mesogen can self-assemble into cubic and hexagonal
columnar microstructures over a broad temperature range,
and possesses superior luminescence property and low optical
band gap energy. Most significantly, this GDY-derived discotic
2
3T. Wöhrle, I. Wurzbach, J. Kirres, A. Kostidou, N.
Kapernaum, J. Litterscheidt, J. C. Haenle, P. Staffeld, A.
Baro, F. Giesselmann and S. Laschat, Chem. Rev., 2016,
1
16, 1139−1241.
24M. Ichihara, A. Suzuki, K. Hatsusaka and K. Ohta, Liq.
Cryst., 2007, 34, 555–567.
2
5H. Mukai, M. Yokokawa, M. Ichihara, K. Hatsusaka and K.
Ohta, J. Porphyrins Phthalocyanines, 2010, 14, 188–197.
6B. Zhang, J. Wang, Z. Yu, S. Yang, A. Shi and E. Chen, J.
Mater. Chem. C., 2014, 2, 5168−5175.
LC material displays
a
tunable phase-dependent
photoluminescence behavior, which have potential
applications in optoelectronic functional materials. We hope
that this work would bring a new perspective for the
development and application of GDY-derived materials.
2
27T. Sakurai, Y. Tsutsui, K. Kato, M. Takata and S. Seki, J.
Mater. Chem. C., 2016, 4, 1490−1496.
2
8T. Kobayashi, T. Ichikawa, T. Kato and H. Ohno, Adv.
Mater., 2017, 29, 1604429.
2
9S. Poppe, X. Cheng, C. Chen, X. Zeng, R. Zhang, F. Liu, G.
Ungar and C. Tschierske, J. Am. Chem. Soc., 2020, 142,
Acknowledgements
This work was supported by the National Natural Science
Foundation of China (No.21971037).
3
296–3300.
3
3
0H. Cheng, H. Gao, T. Wang, M. Xia and X. Cheng, J. Mol.
Liq., 2018, 249, 723–731.
1C. Dressel, F. Liu, M. Prehm, X. Zeng, G. Ungar and C.
Tschierske, Angew. Chem. Int. Ed., 2014, 53, 13115–
Notes and references
1
3120.
2X. Zeng, G. Ungar and M. Impéror-clerc, Nat. Mater.,
005, 4, 562–567.
3
1
2
3
4
5
6
X. Gao, H. Liu, D. Wang and J. Zhang, Chem. Soc. Rev.,
019, 48, 908–936.
Y. Li, L. Xu, H. Liu and Y. Li, Chem. Soc. Rev., 2014, 43,
572–2586.
J. Chen, J. Xi, D. Wang and Z. Shuai, J. Phys. Chem. Lett.,
013, 4, 1443–1448.
Z. Jia, Y. Li, Z. Zuo, H. Liu, C. Huang and Y. Li, Acc. Chem.
Res., 2017, 50, 2470−2478.
X. Qian, H. Liu, C. Huang, S. Chen, L. Zhang, Y. Li, J. Wang
and Y. Li, Sci. Rep., 2015, 5, 7756−7762.
R. Matsuoka, R. Sakamoto, K. Hoshiko, S. Sasaki, H.
Masunaga, K. Nagashio and H. Nishihara, J. Am. Chem.
Soc., 2017, 139, 3145−3152.
G. Li, Y. Li, H. Liu, Y. Guo, Y. Li and D. Zhu, Chem.
Commun., 2010, 46, 3256−3258.
2
2
3
3
3U. Beginn, Prog. Polym. Sci., 2003, 28, 1049−1105.
4L. Guo, Y. Liu, L. Wang, M. Wang, B. Lin and H. Yang, J.
Mater. Chem. C, 2017, 5, 9165−9173.
2
3
5R. Cristiano, J. Eccher, I. H. Bechtold, C. N. Tironi, A. A.
Vieira, F. Molin and H. Gallardo, Langmuir, 2012, 28,
2
1
1590−11598.
6K. P. Gan, M. Yoshio and T. Kato, J. Mater. Chem. C, 2016,
, 5073−5080.
3
3
4
7S.-J. Yoon, J. H. Kim, K. S. Kim, J. W. Chung, B. Heinrich, F.
Mathevet, P. Kim, B. Donnio, A.-J. Attias, D. Kim and S.
Y. Park, Adv. Funct. Mater., 2012, 22, 61–69.
3
3
8Y. Wang, Y. Liao, C. P. Cabry, D. Zhou, G. Xie, Z. Qu, D. W.
Bruce and W. Zhu, J. Mater. Chem. C, 2017, 5,
7
3
999−4008.
8
9
M. Inagaki and F. Kang, J. Mater. Chem. A, 2014, 2, 13193.
J. Kang, Z. Wei and J. Li, ACS Appl. Mater. Interf., 2019, 11,
9L. Guo, Y. Xing, M. Wang, Y. Sun, X. Zhang, B. Lin and H.
Yang, J. Mater. Chem. C, 2019, 7, 4828–4837.
2
692−2706.
0Y. Zhao, H. Tang, N. Yang and D. Wang, Adv. Sci., 2018, 5,
800959.
1
1
4
| J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins