ORGANIC
LETTERS
2005
Vol. 7, No. 26
5913-5915
Asymmetric [2,3]-Wittig Rearrangement
Induced by a Chiral Carbanion Whose
Chirality Was Transferred from an
Epoxide
Michiko Sasaki,† Mariko Higashi,† Hyuma Masu,‡ Kentaro Yamaguchi,‡ and
Kei Takeda*,†
Department of Synthetic Organic Chemistry, Graduate School of Medical Sciences,
Hiroshima UniVersity, 1-2-3 Kasumi, Minami-Ku, Hiroshima 734-8551, Japan, and
Tokushima Bunri UniVersity, Shido, Sanuki, Kagawa, 769-2193 Japan
Received October 20, 2005
ABSTRACT
The enantioselective [2,3]-Wittig rearrangement of 1-allyloxy-1-(naphthalen-2-yl)-4-siloxy-2,4-pentadienyl anion, derived from optically enriched
4,5-epoxy-1-(naphthalen-2-yl)-5-silyl-2-pentenyl allyl ether via a base-induced ring opening of the epoxide followed by Brook rearrangement,
has been studied. The chirality of the epoxide was transferred to the alcohols in up to 97% ee, depending on the solvent used. The best result
was obtained in 1,4-dioxane at a temperature above room temperature.
[2,3]-Wittig rearrangement has become a powerful strategy
for organic synthesis, and its asymmetric variants have been
extensively explored in recent years.1 Among these, an
approach that employs a chiral nonracemic carbanion,2 which
is usually generated by enantioselective deprotonation with
a chiral base3 or a chiral ligand-bound metal reagent,4 appears
to be attractive in terms of simplicity and generality. We
report here asymmetric [2,3]-Wittig rearrangement triggered
by a nonracemic carbanion generated by chirality transfer
from epoxide via Brook rearrangement.5
In our earlier work6,7 on epoxysilane rearrangement (1 f
5), we showed that readily available epoxide chirality can
be transferred to a carbanion via Brook rearrangement (3 f
(4) (a) Kang, J.; Cho, W. O.; Cho, H. G.; Oh, H. J. Bull. Korean Chem.
Soc. 1994, 15, 732-739. (b) Manabe, S. J. Chem. Soc., Chem. Commun.
1997, 737-738. (c) Manabe, S. Chem. Pharm. Bull. 1998, 46, 335-336.
(d) Kawasaki, T.; Kimachi, T. Synlett 1998, 1429-1431. (e) Tomooka, K.;
Komine N.; Nakai, T. Tetrahedron Lett. 1998, 39, 5513-5516. (f) Kawasaki,
T.; Kimachi, T. Tetrahedron 1999, 55, 6847-6862. (g) Gibson, S. E.; Ham,
P.; Jefferson, G. R. J. Chem. Soc., Chem. Commun. 1998, 123-124. (h)
Tomooka, K.; Komine, N.; Nakai, T. Chirality 2000, 12, 505-509. (i)
Barrett I. M.; Breeden, S. W. Tetrahedron: Asymmetry 2004, 15, 3015-
3017.
(5) For reviews on Brook rearrangement, see: (a) Brook, M. A. Silicon
in Organic, Organometallic, and Polymer Chemistry, Wiley & Sons: New
York, 2000. (b) Brook, A. G.; Bassindale, A. R. In Rearrangements in
Ground and Excited States; de Mayo, P., Ed.; Academic Press: New York,
1980; pp 149-221. (c) Brook, A. G. Acc. Chem. Res. 1974, 7, 77-84. (d)
Moser, W. H. Tetrahedron 2001, 57, 2065-2084.
† Hiroshima University.
‡ Tokushima Bunri University.
(1) For reviews on [2,3]-Wittig rearrangement, see: (a) Nakai, T.;
Mikami, K. Chem. ReV. 1986, 86, 885-902. (b) Marshall, J. A. In
ComprehensiVe Organic Synthesis; Trost, B. M., Fleming, I., Eds.;
Pergamon: Oxford, 1991; Vol. 3, pp 975-1014. (c) Mikami, K.; Nakai,
T. Synthesis 1991, 594-604. (d) Nakai, T.; Mikami, K. Org. React. 1994,
46, 105-209. (e) Nakai, T.; Tomooka, K. Pure Appl. Chem. 1997, 696,
595-600.
(2) (a) Verner, E. J.; Cohen, T. J. Am. Chem. Soc. 1992, 114, 375-377.
(b) Hoffmann, R.; Bru¨ckner, R. Angew. Chem., Int. Ed. Engl. 1992, 31,
647-649. (c) Tomooka, K.; Igarashi, T.; Watanabe, M.; Nakai, T.
Tetrahedron Lett. 1992, 39, 5795-5798.
(3) (a) Marshall, J. A.; Lebreton, J. J. Am. Chem. Soc. 1988, 110, 2925-
2931. (b) Marshall, J. A.; Lebreton, J. J. Org. Chem. 1988, 53, 4108-
4112.
(6) (a) Takeda, K.; Kawanishi, E.; Sasaki, M.; Takahashi, Y.; Yamaguchi,
K. Org. Lett. 2002, 4, 1511-1514. (b) Sasaki, M.; Kawanishi, E.; Nakai,
Y.; Matsumoto, T.; Yamaguchi, K.; Takeda, K. J. Org. Chem. 2003, 68,
9330-9339.
10.1021/ol052544h CCC: $30.25
© 2005 American Chemical Society
Published on Web 11/18/2005