currently undertaking molecular dynamics simulations to better
understand and optimise TAG diffusion via tuning the relative
macropore versus mesopore diameters.
2 S. Pinzi, I. L. Garcia, F. J. Lopez-Gimenez, M. D. Luque de Castro,
G. Dorado and M. P. Dorado, Energy Fuels, 2009, 23, 2325.
3 M. Lapuerta, O. Armas and J. Rodr´ıguez-Ferna´ndez, Prog. Energy
Combust. Sci., 2008, 34, 198.
Similar benefits were conferred by macropores in the ester-
ification of palmitic acid over these hierarchical sulfonic acid
silicas (Fig. 9). For all materials, conversions were far superior
to those observed during the transesterification, as is well-
established in the literature, reaching 55% after 6 h using the
sulfonated MM-SBA15-4 catalyst. The associated TOFs reveal
a similar progressive increase with rising macroporosity, with
esterification proceeding 50% faster over the acid modified MM-
SBA15-4 than its SBA-15 countepart.
4 A. Demirbas, Energy Convers. Manage., 2009, 50, 14.
5 K. Narasimharao, A. F. Lee and K. Wilson, J. Bio. Mater. Bioenergy,
2007, 1, 19.
6 A. Sivasamy, K. Y. Cheah, P. Fornasiero, F. Kemausuor, S. Zinoviev
and S. Miertus, ChemSusChem, 2009, 2, 278.
7 Z. X. Wang, J. Zhuge, H. Fang and B. A. Prior, Biotechnol. Adv.,
2001, 19, 201.
8 N. R. Soriano Jr, R. Venditti and D. S. Argyropoulos, Fuel, 2009, 88,
560.
9 S. Miao and B. H. Shanks, Appl. Catal., A, 2009, 359, 113.
10 E. Lotero, Y. Liu, D. E. Lo´pez, K. Suwannakarn, D. A. Bruce and
J. G. Jr Goodwin, Ind. Eng. Chem. Res., 2005, 44, 5353.
11 M. Di Serio, R. Tesser, L. Pengmei and E. Santacesaria, Energy Fuels,
2008, 22, 207.
12 M. Zabeti, W. M. A. W. Daud and M. K. Aroua, Fuel Process.
Technol., 2009, 90, 770.
13 E. Leclercq, A. Finiels and C. Moreau, J. Am. Oil Chem. Soc., 2001,
78, 1161.
14 Y. Liu, E. Lotero, J. G. Jr Goodwin and C. Lu, J. Catal., 2007, 246,
428.
15 M. Kouzu, T. Kasuno, M. Tajika, S. Yamanaka and J. Hidaka, Appl.
Catal., A, 2008, 334, 357; M. Verziu, B. Cojocaru, J. Hu, R. Richards,
C. Ciuculescu, P. Filip and V. I. Parvulescu, Green Chem., 2008, 10,
373.
16 R. S. Watkins, A. F. Lee and K. Wilson, Green Chem., 2004, 6,
335.
17 J. M. Montero, P. L. Gai, K. Wilson and A. F. Lee, Green Chem.,
2009, 11, 265.
18 Y. Liu, E. Lotero, J. G. Jr Goodwin and X. Mo, Appl. Catal., A, 2007,
331, 138; D. G. Cantrell, L. J. Gillie, A. F. Lee and K. Wilson, Appl.
Catal., A, 2005, 287, 183.
19 K. Wilson, C. Hardacre, A. F. Lee, J. M. Montero and L. Shellard,
Green Chem., 2008, 10, 654.
20 D. E. De Vos and P. A. Jacobs, Microporous Mesoporous Mater.,
2005, 82, 293.
21 D. Zhao, Q. Huo, J. Feng, B. F. Chmelka and G. D. Stucky, J. Am.
Chem. Soc., 1998, 120, 6024.
22 Y. Chen, J. Han and H. Zhang, Appl. Surf. Sci., 2007, 253, 9400.
23 S. Garg, K. Soni, G. M. Kumaran, R. Bal, K. Gora-Marek, J. K.
Gupta, L. D. Sharma and G. M. Dhar, Catal. Today, 2009, 141, 125.
24 I. K. Mbaraka, D. R. Radu, V. S. Y. Lin and B. H. Shanks, J. Catal.,
2003, 219, 329.
Fig. 9 Palmitic acid esterification with MeOH over hierarchical macro–
mesoporous SBA-15 sulfonic acid silicas. Conversions shown after 6 h
at 60 ◦C.
We are also investigating functionalization of this
macroporous–mesoporous SBA-15 family with more active
surface acid and base species to further promote plant oil
transesterification and esterification.
Conclusions
Macroporous SBA-15 were synthesized via a simple protocol,
using polystyrene bead templates, in order to improve diffusion
of bulk molecules such as long-chain triglycerides and free
fatty acids. PS/TEOS ratios of 2/1 and 4/1 lead to a meso-
macroporous interconnected network of high specific surface
area. TOFs evaluated from tricaprylin methanolysis catalysed by
these sulfonic-acid functionalized silicas show that macropores
enhance reactivity. These materials could provide a solution
to mass-transport limitations encountered in industry when
producing biodiesel from bulky plant oils via heterogeneous
catalysis. Our preliminary study provides a new illustration of
how tailoring the physical properties of solids can improve their
catalytic application.
25 E. Li and V. Rudolph, Energy Fuels, 2008, 22, 145.
26 S. Gheorghiu and M. O. Coppens, AIChE J., 2004, 50, 812.
27 A. Imhof and D. J. Pine, Nature, 1997, 389, 948; W. Deng, M. W.
Toepke and B. H. Shanks, Adv. Funct. Mater., 2003, 13, 61; Z. Y.
Yuan and B. L. Su, J. Mater. Chem., 2006, 16, 663.
28 X. Zhang, F. Zhang and K. Y. Chan, Mater. Lett., 2004, 58, 2872.
29 O. Sel, D. Kuang, M. Thommes and B. Smarsly, Langmuir, 2006, 22,
2311.
30 J. H. Sun, Z. Shan, T. Maschmeyer and M. O. Coppens, Langmuir,
2003, 19, 8395.
31 J. S. Yun and S. K. Ihm, J. Phys. Chem. Sol., 2008, 69, 1133.
32 C. G. Oh, Y. Baek and S. K. Ihm, Adv. Mater., 2005, 17, 270.
33 T. Sen, G. J. T. Tiddy, J. L. Casci and M. W. Anderson, Chem. Mater.,
2004, 16, 2044.
34 J. P. Blitz, and C. P. Little, Fundamentals and Applied Aspects of
Chemically Modified Surfaces, Royal Society of Chemistry, 1999,
235.
35 W. M. Van Rhijn, D. E. De Vos, B. F. Sels, W. D. Bossaert and P. A.
Jacobs, Chem. Comm., 1998, 317.
36 W. D. Bossaert, D. E. De Vos, W. M. Van Rhijn, J. Bullen, P. J. Grobet
and P. A. Jacobs, J. Catal., 1999, 182, 156.
37 I. D`ıaz, C. Marquez-Alvarez, F. Mohino, K. Prez-Pariente and E.
Sastre, J. Catal., 2000, 193, 283.
38 S. Vaudreuil, M Bousmina, S. Kaliaguine and L. Bonneviot, Adv.
Mater., 2001, 13, 1311.
Acknowledgements
We thank the Engineering and Physical Sciences Research
Council for financial support (EP/F063423/1; EP/G007594/1)
and the award of a Leadership Fellowship (A.F.L.).
39 D. Zhao, J. Feng, Q. Huo, N. Melosh, G. H. Fredrickson, B. F.
Chmelka and G. D. Stucky, Science, 1998, 279, 548.
40 P. F. Siril, N. R. Shiju, D. R. Brown and K. Wilson, Appl. Catal. A,
2009, 364, 95.
Notes and references
1 International Energy Agency, World Energy Outlook 2007 - Executive
Summary, IEA publications, 2007.
302 | Green Chem., 2010, 12, 296–303
This journal is
The Royal Society of Chemistry 2010
©