Please do not adjust margins
Page 9 of 12
New Journal of Chemistry
Journal Name
ARTICLE
1
2
3
4
5
6
7
8
9
23 Li, X.; Cai, W.; An, J.; Kim, S.; Nah, J.; Yang, D.; X. LiV, iWew.ACrtaicil,eJO.nAlinne,
S. Kim, J. Nah, D. Yang, R. Piner, A. VDeOlaIm: 1a0k.1a0n3n9i/,D0I.NJJu0n2g3,85EJ.
Tutuc, S. K. Banerjee, L. Colombo, R. S. Ruoff, Science, 2009,
324, 1312.
24 A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S.
Dresselhaus, Kong, J. Nano Lett., 2009, 9, 30.
6 J. Yan, Z. Wang, H. Wang, Q. Jiang, Rapid and energy-efficient
synthesis of a graphene−CuCo hybrid as a high performance
catalyst. J. Mater. Chem., 2012, 22, 10990.
7
Q. Chen, L. Zhang, G. Chen, Facile preparation of
graphene−copper nanoparticle composite by in situ chemical
reduction for electrochemical sensing of carbohydrates. Anal.
Chem., 2012, 84, 171.
25 J. Coraux, A. T. N'Diaye, C. Busse, T. Michely, Nano Lett., 2008, 8,
565.
26 L. Gao, J. R. Guest, N. P. Guisinger, Nano Lett., 2010, 10, 3512;
Sharmila, T. K. Bindu, S. Sreesha, N. R. Suja, P. M. S. Beegum, E.
T. Thachil, A comparative investigation of aminosilane/ethylene
diamine–functionalized graphene epoxy nanocomposites with
commercial and chemically reduced graphene: static and
dynamic mechanical properties. Emergent Materials. 2019, 2
(3), 371-386; P. Nagaraju, R. Vasudevan, M. Arivanandhan, A.
Alsalme, R. Jayavel, High-performance electrochemical
capacitor based on cuprous oxide/graphene nanocomposite
electrode material synthesized by microwave irradiation
method. Emergent Materials, 2019, 2(4), 495-504; W. Zhiqing,
N. Ambrožová, E. Eftekhari, N. Aravindakshan, W. Wang, Q.
Wang, S. Zhang, K. Kočí, Q. Li, Photocatalytic H 2 generation
from aqueous ammonia solution using TiO2 nanowires-
intercalated reduced graphene oxide composite membrane
under low power UV light. Emergent Materials, 2019, 2 (3), 303-
311.
27 W. Hummers, R. Offeman, Preparation of graphitic oxide. J. Am.
Chem. Soc., 1958, 80, 1339.
28 Y. Si, E. Samulski, Synthesis of water soluble graphene. Nano
Lett., 2008, 8, 1679.
29 H. He, C. Gao, General approach to individually dispersed highly
soluble and conductive graphene nanosheets functionalized by
nitrene chemistry. Chem. Mater., 2010, 22, 5054.
30 V. Georgakilas, A. Bourlinos, R. Zboril, T. Steriotis, P. Dallas, A.
Stubos, C. Trapalis, Organic functionalisation of graphenes.
Chem. Commun. (Cambridge, U. K.) 2010, 46, 1766.
31 B. Kerscher, A. Appel, R. Thomann, R. Mülhaupt, Treelike
polymeric ionic liquids grafted onto graphene nanosheets.
Macromolecules, 2013, 46, 4395.
32 S. Deng, V. Tjoa, H. Fan, H. Tan, D. Sayle, M. Olivo, S. Mhaisalkar,
J. Wei, C. Sow, Reduced graphene oxide conjugated Cu2O
nanowire mesocrystals for high-performance NO2 gas sensor. J.
Am. Chem. Soc., 2012, 134, 4905.
33 D. C. Marcano, D. V. Kosynkin, J. M. Berlin, A. Sinitskii, Z. Sun, A.
Slesarev, ACS Nano., 2010; 4: 4806; R. S. Dey, S. Hajra, R. K.
Sahu, C. R. Raj, M. K. Panigrahi, Chemical Communications,
2012; 48, 1787.
34 L. Yaming, X. Yusheng, Z. Rong, J. Kun, W. Xiuna, D. Chunying, J.
Org. Chem., 2011, 76, 5444.
8 Y. Zhang, J. Tian, H. Li, L. Wang, X. Qin, A. Asiri, A. Al-Youbi, X. Sun,
Biomolecule-assisted, environmentally friendly, one-pot
synthesis of CuS/reduced graphene oxide nanocomposites with
enhanced photocatalytic performance. Langmuir, 2012, 28,
12893; H. Bahrami, A. Ramazani S. A., A. Kheradmand, M.
Shafiee, H. Baniasadi, Investigation of thermomechanical
properties of UHMWPE/graphene oxide nanocomposites
prepared by in situ Ziegler-Natta polymerization. Advances in
Polymer Technology.34 (4)
9 W. Chen, L. Yan, P. Bangal, Chemical reduction of graphene oxide
to graphene by sulfur-containing compounds. J. Phys. Chem. C,
2010, 114, 19885.
10 B. Garg, Y. Ling, Versatilities of graphene-based catalysts
inorganic transformations. Green Mater. 2013, 1, 47.
11 E. Bekyarova, M. Itkis, P. Ramesh, C. Berger, M. Sprinkle, W.
Heer, R. Haddon, Chemical modification of epitaxial graphene:
Spontaneous grafting of aryl groups. J. Am. Chem. Soc., 2009,
131, 1336.
12 Berger, C.; Song, Z.; Li, T.; Li, X.; Ogbazghi, A. Y.; Feng, R.; Dai, Z.;
Marchenkov, A. N.; Conrad, E. H.; First, P. N.; de Heer, W. A.
Ultrathin Epitaxial Graphite: 2D Electron Gas Properties and a
Route toward Graphene-Based Nanoelectronics. J. Phys. Chem.
B, 2004, 108 (52), 19912.
13 S. Bae, H. Kim, Y. Lee, X. Xu, J. S. Park, Y. Zheng, J. Balakrishnan,
T. Lei, H. Ri Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Ozyilmaz, J. H.
Ahn, B. H. Hong, S. Iijima, Roll-to-Roll Production of 30-inch
Graphene Films for Transparent Electrodes. Nat. Nano., 2010, 5
(8), 574.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
14 S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J.
Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, R. S. Ruoff,
Graphene-Based Composite Materials. Nature. 2006, 442
(7100), 282; K. K. Sadasivuni, D. Ponnamma, J., Kim S. Thomas,
Graphene-Based
Polymer
Nanocomposites
in
15 J. J. Yoo, K. Balakrishnan, J. Huang, V. Meunier, B. G. Sumpter, A.
Srivastava, M. Conway, A. L. Mohana Yu, J. Reddy, R. Vajtai, P.
M. Ajayan, Ultrathin Planar Graphene Supercapacitors. Nano
Lett., 2011, 11 (4), 1423.
16 W. Yuan, A. Liu, L. Huang, C. Li, G. Shi, High-Performance NO2
sensors based on chemically modified graphene. Adv. Mater.,
2013, 25 (5), 766.
17 G. K. Dimitrakakis, E. Tylianakis, G. E. Froudakis, Pillared
Graphene: A New 3-D Network Nanostructure for Enhanced
Hydrogen Storage. Nano Lett., 2008, 8 (10), 3166.
18 K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S.
V. Dubonos, I. V. Grigorieva, A. A. Firsov, Electric Field Effect in
Atomically Thin Carbon Films. Science, 2004, 306 (5696), 666.
19 A. K. Geim, K. S. Novoselov, The rise of Graphene. Nat. Mater.,
2007, 6 (3), 183.
20 C. Lee, X. Wei, J. W. Kysar, J. Hone, Measurement of the Elastic
Properties and Intrinsic Strength of Monolayer Graphene.
Science, 2008, 321 (5887), 385.
21 A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F.
Miao, C. N. Lau, Superior Thermal Conductivity of Single-Layer
Graphene. Nano Lett., 2008, 8 (3), 902.
35 Y. –T. Liu, M. Dang, X. -M. Xie, Z. -F. Wang, X.-Y. Ye, Synergistic
effect of Cu2+-coordinated carbon nanotube/graphene network
on the electrical and mechanical properties of polymer
nanocomposites. J. Mater. Chem., 2011, 21, 18723.
36 Y. Matsumoto, M. Koinuma, S. Ida, S. Hayami, T. Taniguchi, K.
Hatakeyama, H. Tateishi, Y. Watanabe, S. Amano, Photoreaction
of Graphene Oxide Nanosheets in Water. J. Phys. Chem. C,
2011, 115, 19280; Y. Matsumoto, M. Morita, S. Y. Kim, Y.
Watanabe, M. Koinuma, S. Ida, Photoreduction of Graphene
Oxide Nanosheet by UV-light illumination under H2. Chem. Lett.,
2010, 39, 750; Y. Matsumoto, M. Koinuma, S. Y. Kim, Y.
Watanabe, T. Taniguchi, K. Hatakeyama, H. Tateishi, S. Ida,
Simple Photoreduction of Graphene Oxide Nanosheet Under
Mild Conditions. ACS Appl. Mater. Interfaces, 2010, 2, 3461; F.
Zhao, J. Liu, X. Huang, X. Zou, G. Lu, P. Sun, S. Wu, W. Ai, M. Yi,
X. Qi, L. Xie, J. Wang, H. Zhang, W. Huang, Chemoselective
Photodeoxidization of Graphene Oxide Using Sterically
Hindered Amines as Catalyst: Synthesis and Applications. ACS
Nano, 2012, 6, 3027.
22 A. N. Obraztsov, E. A. Obraztsova, A. V. Tyurnina, A. A.
Zolotukhin, Carbon, 2007, 45, 2017.
This journal is © The Royal Society of Chemistry 20xx
J. Name., 2013, 00, 1-3 | 9
Please do not adjust margins