Article
J. Agric. Food Chem., Vol. 57, No. 9, 2009 3865
cation and polyhydric alcohol, particularly Ca2+/sorbitol,
appeared to play an important role in the structure and
function of the lipase. Ca2+ plays an important role in the
increased activity of lipase, possibly due to the hydration of
the catalytic site and cross-linking by a Ca-ion bridge with
negatively charged amino acyl residues. The lipase appeared
to be a metalloenzyme due to its inhibition by EDTA. The
purified lipase exhibited a lower affinity for medium to long
fatty acyl chain length ester bonds (as in glycerol trioleate)
than short acyl chain fatty acid triglycerides. Because of its
high specificity toward short carbon chain length esters, the
potential application(s) of the lipase from P. fluorescens
MTCC 2421 in the enrichment of unsaturated fatty acids
as triglycerides may be further explored by performing
enzyme-catalyzed hydrolytic reactions of marine oils.
Further optimization of hydrolysis parameters will be taken
up in future studies for obtaining targeted unsaturated fatty
acids from marine sources, which will pave the way for lipase
application on a commercial scale. This study has potential
applications to design the specific reaction medium with
Pseudomonas fluorescens SIK W1. Appl. Microbiol. Biotechnol.
1991, 35, 237–241.
(12) Shimada, Y.; Maruyama, K.; Okazaki, S.; Nakamura, M.;
Sugihara, A.; Tominaga, Y. Enrichment of polyunsaturated
fatty acids with Geofrichum candidum lipase. J. Am. Oil Chem.
Soc. 1994, 71, 951–954.
(13) Matori, M.; Asahara, T.; Ota, Y. Positional specificity of
microbial lipases. J. Ferment. Bioeng. 1991, 72, 397–398.
(14) Winkler, U. K.; Stuckmann, M. Glycogen, hyaluronate and
some other polysaccharides greatly enhance the formation
of exolipase by Serratia marcescens. J. Bacteriol. 1979, 138,
663–670.
(15) Bradford, M. A rapid and sensitive method for the quanti-
fication of microgram quantities of protein utilizing the
principle of protein-dye binding. Anal. Biochem. 1976, 72,
248–254.
(16) Laemmli, U. K. Cleavage of structural protein during the
assembly of the head of bacteriophage T4. Nature (London)
1970, 224, 680–685.
(17) Kim, K. R.; Kwon, D. Y.; Yoon, S. H.; Kim, W. Y.; Kim, K. H.
Purification, refolding, and characterization of recombinant
Pseudomonas fluorescens lipase. Protein Express. Purif. 2005,
39, 124–129.
suitable stabilizers and additives (such as sorbitol/Ca2+
)
for selective enrichment of unsaturated fatty acids by
lipase-catalyzed hydrolysis and transesterification reactions.
(18) Lee, Y. P.; Chung, G. H.; Rhee, J. S. Purification and char-
acterization of Pseudomonas fluorescens SIK W1 lipase
expressed in Escherichia coli. Biochim. Biophys. Acta 1993,
1169, 156–164.
(19) Raymond, Y.; Morin, A.; Cormier, F.; Champagne, C. P.;
Dubeau, H. Physical factors influencing the production of
strawberry aroma by Pseudomonas fragi grown in milk. Bio-
technol. Lett. 1990, 12, 931–939.
ACKNOWLEDGMENT
We are thankful to Prof. (Dr.) Mohan Joseph Modayil,
Director, CMFRI, Cochin, for providing necessary facilities
and encouragement to carry out the work.
(20) Makhzoum, A.; Owusu-Apenten, R. K.; Knapp, J. S. Purifica-
tion and properties of lipase from Pseudomonas fluorescens
strain 2D. Int. Dairy J. 1996, 6, 459–462.
LITERATURE CITED
(21) Sakiyama, T.; Yoshimi, T.; Miyake, A.; Umeoka, M.; Tanaka,
A.; Ozaki, S.; Nakanishp, K. Purification and characterization
of a monoacylglycerol lipase from Pseudomonas sp. LP7315.
J. Biosci. Bioeng. 2001, 91, 27–32.
(1) Akoh, C. C.; Jennings, B. H.; Lillard, D. A. Enzymatic
modification of evening primrose oil: incorporation of n3
polyunsaturated fatty acids. J. Am. Oil Chem. Soc. 1996, 73,
1059–1062.
(22) Nardini, M.; Dijkstra, B. W. R,β-Hydrolase fold enzymes: the
family keeps lipase. Curr. Opin. Struct. Biol. 1999, 9, 732–737.
(23) Nishio, T.; Chikano, T.; Kamimura, M. Purification and some
properties of lipase produced by Pseudomons fragi 22.39 B.
Agric. Biol. Chem. 1987, 51, 181–186.
(24) Mencher, J. R.; Alford, J. A. Purification and characterization
of the lipase from Pseudomonas fragi. J. Gen. Microbiol. 1967,
48, 317–328.
(25) Sharma, A. K.; Tiwari, R. P.; Hoondal, G. S. Properties of a
thermostable and solvent stable extracellular lipase from a
Pseudomonas sp AG-8. J. Basic Microbiol. 2001, 41, 363–366.
(26) Lin, S. F.; Chiou, C. M.; Yeh, C. M.; Tsai, Y. C. Purification
and partial characterization of an alkaline lipase from Pseudo-
monas pseudoalcaligenes F-111. Appl. Environ. Microbiol. 1996,
62, 1093–1095.
(27) Kambourova, M.; Kirilova, N.; Mandeva, R.; Derekova, A.
Purification and properties of thermostable lipase from a
thermophilic Bacillus stearothermophilus MC 7. J. Mol. Catal.
B: Enzym. 2003, 22, 307–313.
(2) Chakraborty, K.; Paulraj, R. Eicosapentaenoic acid enrich-
ment from sardine oil by argentation chromatography.
J. Agric. Food Chem. 2007, 55, 7586–7595.
(3) Chakraborty, K.; Paulraj, R. An extra-cellular alkaline metal-
lolipase from Bacillus licheniformis MTCC 6824: purifica-
tion and biochemical characterization. Food Chem. 2008,
109, 727–736.
(4) Chakraborty, K.; Paulraj, R. Enrichment of eicosapentaenoic
acid from sardine oil with Δ5-olefinic bond specific lipase from
Bacillus licheniformis MTCC 6824. J. Agric. Food Chem. 2008,
56, 1428–1433.
(5) Jaeger, K. E.; Eggert, T. Lipases for biotechnology. Curr. Opin.
Biotechnol. 2002, 13, 390–397.
(6) Jaeger, K. E.; Ransac, S.; Dijkstra, B. W.; van Henrel, C. C.;
Misset, O. Bacterial lipases. FEMS Microbiol. Rev. 1994, 15,
29–63.
(7) Schuepp, C.; Kermasha, S.; Michalski, M. C.; Morin, A.
Production, partial purification and characterisation of lipases
from Pseudomonas fragi CRDA 037. Process Biochem. 1997,
32, 225–232.
(8) Ochoa, L. D. C.; Gomez, C. R.; Alfaro, G. V.; Ros, R. O.
Screening, purification and characterization of the thermoalk-
alophilic lipase produced by Bacillus thermoleovorans CCR11.
Enzyme Microb. Technol. 2005, 37, 648–654.
(9) Kojima, Y.; Shimizu, S. Purification and characterization of
the lipase from Pseudomonas fluorescens HU380. J. Biosci.
Bioeng. 2003, 96, 219–226.
(28) Kim, H.; Sung, M.; Kim, H.; Oh, T. Occurrence of thermo-
stable lipase. in thermophilic Bacillus sp. strain 398. Biosci.,
Biotechnol., Biochem. 1994, 58, 961–962.
(29) Schmidt-Dannert, C.; Sztajer, H.; Stocklein, W.; Menge, U.;
Schmid, R. D. Screening, purification and properties of a
thermophilic lipase from Bacillus thermocatenulatus. Biochim.
Biophys. Acta 1994, 1214, 43–53.
(30) Ollis, D. L.; Cheah, E.; Cygler, M.; Dijkstra, B.; Frolow, F.;
Franken, S. M.; Harel, M.; Remington, S. J.; Silman, I.;
Schrag, J.; Sussman, J. L.; Verschueren, K. H. G.; Goldman,
A. Protein Eng. 1992, 5, 197-221.
(10) Kojima, Y.; Kobayashi, M.; Shimizu, S. A novel lipase from
Pseudomonas fluorescens HU380: gene cloning, overproduc-
tion, renaturation-activation, two-step purification, and char-
acterization. J. Biosci. Bioeng. 2003, 96, 242–249.
(11) Chung, G. H.; Lee, Y. P.; Yoo, O. J.; Rhee, J. S. Cloning
and nucleotide sequence of thermostable lipase gene from
(31) Schrag, J. D.; Li, Y.; Wu, S.; Cygler, M. Ser-His-Glu triad
forms the catalytic site of the lipase from Geotrichum candidum.
Nature (London) 1991, 351, 761–764.