2
291
Synlett
A. Wojtkielewicz et al.
Letter
Table 2 (continued)
Entry Substrate
DIBAL-H NH
4
Cl
Product (yield)
(equiv)
(equiv)
1
6
7
O
40
42
CN
(70%)
1
0
NH2
1
0
1
CONH2
40
20
42
21
CN (98%)
OH
OH
TBSO
OH
TBSO
OH
H
H
18
(48%)
a
Reaction temperature: 66 °C; reaction time: 16 h.
Reaction was carried out at r.t.
b
Table 3 Reactivity of Aminoalane Prepared from Various Ammonium
Salts
References and Notes
(1) Friedrick, K.; Wallensfels, K. In The Chemistry of the Cyano
DIBAL-H (40 equiv)
ammonium salt (42 equiv)
O
Group; Rappoport, Z., Ed.; Wiley Interscience: New York, 1970.
(2) Pollak, P.; Romeder, G.; Hagedorn, F.; Gelbke, H.-P. In Ullmann’s
Encyclopedia of Industrial Chemistry; Wiley-VCH: Weinheim,
O
CN
10
+
1
0
OH
10 NH2
THF, reflux, 16 h
2012.
(
3) Jones, L. H.; Summerhill, N. W.; Swain, N. A.; Mills, J. E. Med.
Chem. Commun. 2010, 1, 309.
Entry
Ammonium salt
Product yield
Nitrile
Amide
(
4) Janakiraman, M. N.; Watenpaugh, K. D.; Tomich, P. K.; Chong, K.-
T.; Turner, S. R.; Tommasi, R. A.; Thaisrivongs, S.; Strohbach, J.
W. Bioorg. Med. Chem. Lett. 1998, 8, 1237.
1
2
3
NH
NH
4
Cl
75%
56%
61%
<2%
15%
25%
4
NO
3
(
5) Dubé, D.; Blouin, M.; Brideau, C.; Chan, C.-C.; Desmarais, S.;
Ethier, D.; Falgueyret, J.-P.; Friesen, R. W.; Girard, M.; Girard, Y.;
Guay, J.; Riendeau, D.; Tagari, P.; Young, R. N. Bioorg. Med. Chem.
Lett. 1998, 8, 1255.
4 2 3
(NH ) CO
In summary, a simple one-step protocol was developed
for the synthesis of nitriles from carboxylic acids or their
derivatives (lactones, esters, amides). A new aminoalane re-
agent was prepared in situ from DIBAL-H and ammonium
salt. By employing this method, various substrates, e.g., ali-
phatic, unsaturated, aromatic acids (or their esters and am-
ides), excluding those with a carboxyl group at the tertiary
carbon atom, were transformed in good yields into the cor-
responding nitriles under relatively mild conditions.
(
6) Larock, R. C. Nitriles, Carboxylic Acids and Derivatives in Compre-
hensive Organic Transformations; Wiley: New York, 1999, 2nd
ed., 1621.
(7) (a) Yamaguchi, K.; Mizuno, N. Angew. Chem. Int. Ed. 2003, 42,
1480. (b) Chen, F.; Kuang, Y.; Dai, H.; Lu, L.; Huo, M. Synthesis
2003, 2629. (c) Biondini, D.; Brinchi, L.; Germani, R.; Goracci, L.;
Savelli, G. Eur. J. Org. Chem. 2005, 3060.
(
8) (a) Kuo, C.; Zhu, J.; Wu, J.; Chu, C.; Yao, C.; Shia, K. Chem.
Commun. 2007, 301. (b) Hanada, S.; Motoyama, Y.; Nagashima,
H. Eur. J. Org. Chem. 2008, 4097.
(9) (a) Augustine, J. K.; Bombrun, A.; Atta, R. N. Synlett 2011, 2223.
(
3
b) Patil, U. B.; Shendage, S. S.; Nagarkar, J. M. Synthesis 2013, 45,
295.
Acknowledgment
Financial support from the University of Białystok within the project
BST-124 is gratefully acknowledged. The equipment for the Center of
Synthesis and Analysis BioNanoTechno of the University of Białystok
was funded by EU, as a part of the Operational Program Development
of Eastern Poland 2007-2013, project: POPW.01.03.00-20-034/09-00.
(10) (a) Tsuneo, I.; Tomoko, T.; Masataka, Y. Synthesis 1983, 142.
(b) Hulkenberg, A.; Troost, J. J. Tetrahedron Lett. 1982, 23, 1505.
(c) Vincent, J. H.; Richard, A. B. Tetrahedron 1998, 54, 9281.
(d) Knagani, C. O.; Day, B. W.; Kelley, D. E. Tetrahedron Lett.
2007, 48, 5933.
(
11) Wood, J. L.; Khatri, N. A.; Weinreb, S. M. Tetrahedron Lett. 1979,
907.
(12) Telvekar, V. N.; Rane, R. A. Tetrahedron Lett. 2007, 48, 6051.
13) Miyagi, K.; Moriyama, K.; Togo, H. Eur. J. Org. Chem. 2013, 5886.
4
Supporting Information
(
Supporting information for this article is available online at
(14) Suzuki, Y.; Moriyama, K.; Togo, H. Tetrahedron Lett. 2011, 67,
http://dx.doi.org/10.1055/s-0034-1381060.
S
u
p
p
ortioIgnfrm oaitn
S
u
p
p
ortioIgnfrm oaitn
7956.
(15) Suzuki, Y.; Yoshino, T.; Moriyama, K.; Togo, H. Tetrahedron 2011,
67, 3809.
©
Georg Thieme Verlag Stuttgart · New York — Synlett 2015, 26, 2288–2292