Chemistry Letters Vol.33, No.7 (2004)
927
Table 1. NbCl5-catalyzed
dihydropyrimidinonesa
three-component
synthesis
of
3,4-
imidinones with a wide range of substitution patterns on all three
components. To the best of our knowledge, there are only few re-
ports on the one-pot Biginelli reaction at room temperature,11 as
most of the reported methodologies to date are carried out under
drastic conditions. The scope and generality of this process is il-
lustrated with respect to various aldehydes, 1,3-dicarbonyl com-
pounds, and urea or thiourea and the results are presented in the
Table.
In summary, we found that niobium(V) chloride is an ex-
tremely mild and highly efficient Lewis acid for the synthesis
of biologically significant aryl-substituted dihydropyrimidinones
by means of a three-component condensation of an aldehyde, 1,3-
dicarbonyl compound and urea or thiourea in a one-pot operation.
This method is applicable for a wide range of substrates including
aromatic, aliphatic, ꢀ,ꢁ-unsaturated and heterocyclic aldehydes
and provides a variety of biologically relevant dihydropyrimidi-
nones in high to quantitative yields over a short reaction time.
Aldehyde
CHO
R''
Yield/%b
Time/h
2.5
Entry
X
R'
1
2
O
Me
OEt
95
93
CHO
CHO
O
Me
OEt
3.0
Cl
3
4
O
O
Me
Me
OEt
OEt
4.0
2.0
91
89
MeO
O2N
CHO
CHO
5
O
Me
OEt
6.0
85
Me
N
Me
O
CHO
CHO
6
7
O
O
Me
Me
OEt
OEt
3.0
3.0
94
96
O
MeO
MeO
BVS, JJN thank CSIR, New Delhi, for the award of fellow-
ships.
CHO
8
9
O
S
Me
Me
OEt
OEt
5.0
3.5
90
91
CHO
CHO
References and Notes
Cl
1
a) K. S. Atwal, B. N. Swanson, S. E. Unger, D. M. Floyd, S. Moreland, A. Hed-
berg, and B. C. O’Reilly, J. Med. Chem., 34, 806 (1991). b) C. O. Kappe and
W. M. F. Fabian, Tetrahedron, 53, 2803 (1997). c) K. S. Atwal, G. C. Roonyak,
B. C. O’Reilly, and J. Schwartz, J. Org. Chem., 54, 5898 (1989).
a) C. O. Kappe, Tetrahedron, 49, 6937 (1993). b) K. Singh, J. Singh, P. K Deb,
and H. Singh, Tetrahedron, 55, 12873 (1999). c) N.-Y. Fu, Y.-F. Yuan, Z. Cao,
S.-W. Wang, J.-T. Wang, and C. Peppe, Tetrahedron, 58, 4801 (2002).
a) A. D. Patil, N. V. Kumar, W. C. Kokke, M. F. Bean, A. J. Freyer, C. De
Brosse, S. Mai, A. Truneh, B. Carte, and D. J. Faulkner, J. Org. Chem., 60,
1182 (1995). b) B. B. Snider, J. Chen, A. D. Patil, and A. Freyer, Tetrahedron
Lett., 37, 6977 (1996).
10
11
S
Me
Me
OEt
OEt
4.0
3.0
93
70
MeO
CHO
2
3
O
N
H
12
13
O
O
Me
Me
OEt
2.5
3.0
91
93
CHO
CHO
S
OMe
4
5
P. Biginelli, Gazz. Chim. Ital., 23, 360 (1893).
CHO
CHO
CHO
a) K. Folkers and T. B. Johnson, J. Am. Chem. Soc., 55, 3361 (1933). b) K.
Folkers and T. B. Johnson, J. Am. Chem. Soc., 56, 1180 (1934). c) K. Folkers,
H. J. Harwood, and T. B. Johnson, J. Am. Chem. Soc., 54, 3751 (1932). d) P.
Wipf and A. Cunningham, Tetrahedron Lett., 36, 7819 (1995).
a) B. C. O’Reilly and K. S. Atwal, Heterocycles, 26, 1185 (1987). b) K. S. Atwal,
B. C. O’Reilly, J. Z. Gougoutas, and M. F. Malley, Heterocycles, 26, 1189
(1987). c) A. D. Shutalev, E. A. Kishko, N. Sivova, and A. Y. Kuznetsov, Mole-
cules, 3, 100 (1998).
a) E. H. Hu, D. R. Sidler, and U.-H. Dolling, J. Org. Chem., 63, 3454 (1998).
b) C. O. Kappe and S. F. Falsone, Synlett, 1998, 718. c) B. C. Ranu, A. Hajra,
and U. Jana, J. Org. Chem., 65, 6270 (2000). d) Y. Ma, C. Qian, L. Wang, and
M. Yang, J. Org. Chem., 65, 3864 (2000). e) J. Lu and H. Ma, Synlett, 2000, 63.
f) F. Bigi, S. Carloni, B. Frullanti, R. Maggi, and G. Sartori, Tetrahedron Lett.,
40, 3465 (1999).
a) Ch. V. Reddy, M. Mahesh, P. V. K. Raju, T. R. Babu, and V. V. N. Reddy,
Tetrahedron Lett., 43, 2657 (2002). b) A. S. Paraskar, G. K. Dewkar, and A.
Sudalai, Tetrahedron Lett., 44, 3305 (2003). c) A. Shaabani, A. Bazgir, and F.
Teimouri, Tetrahedron Lett., 44, 857 (2003).
14
15
O
O
Ph
OEt
Me
5.0
4.0
85
80
Me
6
7
16
O
Me
OEt
4.0
87
CHO
17
18
O
O
Me
Me
OEt
OEt
3.0
3.5
90
82
CHO
CHO
19
20
O
O
Me
Me
OEt
OEt
3.0
5.0
85
91
N
H
8
9
CHO
a) S. Kobayashi, T. Busujima, and S. Nagayama, Chem.—Eur. J., 6, 770 (2000).
b) C. K. Z. Andrade, N. R. Azevedo, and G. R. Oliveira, Synthesis, 2002, 928.
aAll the products were characterized by 1H-NMR, IR and mass spectros-
copy.
10 a) C. K. Z. Andrade and N. R. Azevedo, Tetrahedron Lett., 42, 6473 (2001). b)
C. K. Z. Andrade and R. A. F. Matos, Synlett, 2003, 1189.
11 R. Varala, M. M. Alam, and S. R. Adapa, Synlett, 2003, 67; M. Gohain, D.
Prajapati, and J. S. Sandhu, Synlett, 2004, 235.
perature even after a long reaction time (8–12 h). The efficacy of
other Lewis acids such as InCl3, CeCl3, GdCl3, TaCl5, and YCl3
was studied for this reaction. Among these catalysts, NbCl5 was
found to be superior in terms of conversion and reaction time.
This three-component reaction did not proceed at room tempera-
ture using the above mentioned catalysts. However, the reaction
proceeded with these reagents under reflux conditions. It seems
that methanol or ethanol is a much better solvent in terms of con-
version than all the other tested solvents which included acetoni-
trile, dichloromethane and tetrahydrofuran. Furthermore, the use
of just 5 mol % of niobium(V) chloride in methanol is sufficient to
promote the reaction and no additives such as HCl or
CH3COOH7e are required for this conversion. Thus, this proce-
dure provides an easy access to the preparation of substituted pyr-
12 Experimental procedure:
A mixture of ꢁ-keto ester (1.0 mmol), aldehyde
(1.0 mmol), urea or thiourea (1.5 mmol), and NbCl5 (5 mol %) in methanol
(10 mL) was stirred at room temperature for a certain period of time as required
to complete the reaction. The progress of the reaction was monitored by TLC. On
completion, the solvent was removed under reduced pressure and the resulting
product was washed with water, filtered and recrystallized from hot methanol
to afford pure dihydropyrimidinone. The spectral data of all the products were
identical with those of authentic samples.6–8 Spectroscopic data for selected
products: 3n: Solid, m.p. 157–158 ꢁC. IR (KBr): v 3215, 3085, 2978, 1697,
1650 cmꢂ1 1H NMR (200 MHz, DMSO-d6): ꢂ 0.90 (t, 3H, J = 6.8 Hz), 3.85
.
(q, 2H, J = 6.8 Hz), 5.45 (d, 1H, J = 1.9 Hz), 6.55 (brs, NH, 1H), 7.30–7.40
(m, 10 H), 7.80 (brs, NH, 1H). EIMS: m=z: 322 (Mþ), 294, 278, 249, 185,
157, 138, 91, 77, 69. 3o: Solid, m.p. 240–242 ꢁC. IR (KBr): v 3286, 3251,
.
2920, 1703, 1675, 1598, 1414, 1327, 1235, 1105, 997, 965, 768 cmꢂ1 1H
NMR (200 MHz, DMSO-d6): ꢂ 2.10 (s, 3H), 2.25 (s, 3H), 5.30 (d, 1H, J =
2.0 Hz), 7.20–7.30 (m, 5H), 7.60 (brs, NH, 1H), 9.05 (brs, NH, 1H). EIMS:
m=z: 230 (Mþ), 188, 154, 144, 115, 77, 43.
Published on the web (Advance View) June 26, 2004; DOI 10.1246/cl.2004.926