Ball Milling of Copper Powder Under Dry and Surfactant-Assisted Conditions
Musza et al.
also formed on Cu particles during wet milling, and it is
9. V. Rosenband and A. Gany, J. Mater. Process. Technol.
53–154, 1058 (2004).
2
8–30
1
known to aid the synthesis.
This promoting effect was
1
1
1
0. N. D. Nikoli c´ , L. J. Pavlovi c´ , M. G. Pavlovi c´ , and K. I. Popov,
the highest in DMSO indicating the presence of increased
Powder Technol. 185, 195 (2008).
amount of Cu O phase as a side effect of wet milling.
2
1. M. S. Yeh, Y. S. Yang, Y. P. Lee, H. F. Lee, Y. H. Yeh, and C. S.
Yeh, J. Phys. Chem. B 103, 6851 (1999).
2. N. B. Dhokey, M. G. Walunj, and U. C. Chaudhari, Adv. Powder
Technol. 25, 795 (2014).
4
. CONCLUSIONS
By increasing the grinding frequency, the coherently scat-
tering domain size was reduced monotonously; however,
but the cold welding processes resulted in heavily aggre-
gated particles, predominant during dry milling. Using
added organics could decrease the aggregation tendency
of milled copper powder. Dimethyl sulfoxide proved to be
excellent protective agent, the as-prepared particles were
generated in nano- or micrometer scale. Even dry milling
was able to increase the catalytic activity; however, wet
milling, especially in DMSO led to remarkable further
increase due to the significant increase in the accessible
13. A. I. Ustinov, T. V. Melnichenko, K. V. Liapina, and A. E. Shishkin,
Vacuum 141, 272 (2017).
1
1
4. C. Suryanarayana, Prog. Mater. Sci. 46, 1 (2001).
5. B. Madavali, J.-H. Lee, J. K. Lee, K. Y. Cho, S. Challapalli, and
S.-J. Hong, Powder Technol. 256, 251 (2014).
1
6. M. S. Khoshkhoo, S. Scudino, T. Gemming, J. Thomas,
J. Freudenberger, M. Zehetbauer, C. C. Koch, and J. Eckert, Mater.
Design 65, 1083 (2015).
1
1
1
7. P. Wynblatt and R. C. Ku, Surf. Sci. 65, 511 (1977).
8. R. Kirchheim, Acta Mater. 55, 5129 (2007).
9. C. C. Koch, R. O. Scattergood, K. A. Darling, and J. E. Semones,
J. Mater. Sci. 43, 7264 (2008).
20. M. A. Atwater, D. Roy, K. A. Darling, B. G. Butler, R. O.
Scattergood, and C. C. Koch, Mat. Sci. Eng. A 558, 226 (2012).
active surface as well as the promoting effect of Cu O
2
2
1. K. A. Nazari, A. Nouri, and T. Hilditch, J. Alloy. Compd. 615, 47
2014).
even if it was formed in minute amounts during milling.
(
2
2. P. Balaz, Mechanochemistry in Nanoscience and Minerals Engi-
neering: High-Energy Milling, Springer-Verlag, Berlin, Heidelberg
(2008), pp. 111–114.
Acknowledgment: This work was supported via the
grant GINOP-2.3.2-15-2016-00013. The financial help is
highly appreciated.
23. G. Clavé, C. Garel, C. Poullain, B.-L. Renard, T. K. Olszewski,
B. Lange, M. Shutcha, M.-P. Faucon, and C. Grison, RSC. Adv.
6
, 59550 (2016).
References and Notes
24. C. Sambiagio, S. P. Marsden, A. J. Blacker, and P. C. McGowan,
Chem. Soc. Rev. 43, 3525 (2014).
1
2
3
4
. A. Galloa, T. Tsoncheva, M. Marelli, M. Mihaylov, M. Dimitrov,
V. Dal Santo, and K. Hadjiivanov, ApIpPl.:C1a8ta5l..4B61. 28 6 4, .1 16 51 5( 2 0O1 2n ) :. Sat,2 05 8. TD. eU cn g 2á r0, 1G 8. T1 i 2c h: y4 ,9J :. 4 G1 ubicza, and R. J. Hellmig, Powder Diffr.
. F. Alonso, Y. Moglie, and G. Radivoy, ACcc.oCphyermig. hRte:s.A 4m8 ,e2r 5i c1 6a n Scien2 t0i f, i 3c 6 P6 (u2 b0 0l i 5s ) h. ers
(
2015).
26. C. R. Hubbard, E. H. Evans, and D. K. Smith, J. Appl. Crystallogr.
9, 169 (1976).
Delivered by Ingenta
´
. S. Švarcová, Z. Cermáková, J. Hradilová, P. Bezdi c´ ka, and D. Hradil,
Spectrochim. Acta A 132, 514 (2014).
. S. P. Wu, H. L. Qin, and P. Li, BME-MLCC, J. Univ. Sci. Technol. B
27. Z. N. Siddiqui, F. Farooq, T. N. M. Musthafa, A. Ahmad, and A. U.
Khan, J. Saudi Chem. Soc. 17, 237 (2013).
1
3, 250 (2006).
28. S. U. Son, I. K. Park, J. Park, and T. Hyeon, Chem. Commun. 7, 778
(2004).
29. Y.-P. Zhang, Y.-C. Jiao, Y.-S. Yang, and C.-L. Li, Tetrahedron Lett.
54, 6494 (2013).
30. S. B. Ötvös, G. Hatoss, Á. Georgiádes, Sz. Kovács, I. M. Mándity,
Z. Novák, and F. Fülöp, RSC. Adv. 4, 46666 (2014).
5
6
7
. J. Xiong, B. Xu, and H. Ni, Int. J. Min. Met. Mater. 16, 293 (2009).
. L. Lu, M. L. Sui, and K. Lu, Science 287, 1463 (2000).
. R. V. Kumar, Y. Mastai, Y. Diamant, and A. Gedanken, J. Mater.
Chem. 11, 1209 (2001).
8
. L. Qi, J. Ma, and J. Shen, J. Colloid. Interf. Sci. 186, 498 (1997).
Received: 9 October 2017. Accepted: 13 December 2017.
394
J. Nanosci. Nanotechnol. 19, 389–394, 2019