E. Rafiee, S. Eavani / Journal of Molecular Catalysis A: Chemical 373 (2013) 30–37
37
methanol as the solvent in shorter reaction time (Table 4, entry 9).
References
Reusability of PW/Fe@Si catalyst was investigated under the opti-
mized reaction conditions (Table 4, entry 9). The catalyst could be
facilely recycled through magnetic separation and no significant
loss of activity and selectivity was found even after four subsequent
runs.
With the best reaction conditions in our hand (Table 4,
entry 9), we decided to test the generality and efficiency of
this methodology (Table 5). In general, the corresponding aro-
matic esters were obtained in good to excellent yields regardless
of the electron-donating or electron-withdrawing group in the
benzene ring.
[
[
1] H.F. Rase, Handbook of Commercial Catalysts: Heterogeneous Catalysts, CRC
Press, New York, 2000.
2] C.W. Lim, I.S. Lee, Nano Today 5 (2010) 412–434.
[3] A. Schätz, M. Hager, O. Reiser, Adv. Funct. Mater. 19 (2009) 2109–2115.
[4] Y. Zheng, P.D. Stevens, Y. Gao, J. Org. Chem. 71 (2006) 537–542.
[5] C. Che, W. Li, S. Lin, J. Chen, J. Zheng, J. Wu, Chem. Commun. (2009) 5990–5992.
[6] C.S. Gill, B.A. Price, C.W. Jones, J. Catal. 251 (2007) 145–152.
[7] D. Guin, B. Baruwati, S.V. Manorama, Org. Lett. 9 (2007) 1419–1421.
[
8] K.S. Lee, M.H. Woo, H.S. Kim, E.Y. Lee, I.S. Lee, Chem. Commun. (2009)
780–3782.
3
[
9] L. Gao, J. Wu, S. Lyle, K. Zehr, L. Cao, D. Gao, J. Phys. Chem. C 112 (2008)
17357–17367.
[10] L. Chien, C. Lee, Biotechnol. Bioeng. 100 (2008) 223–230.
11] E. Rafiee, S. Eavani, Green Chem. 13 (2011) 2116–2122.
12] L.R. Pizzio, C.V. Cáceres, M.N. Blanco, Appl. Surf. Sci. 151 (1999) 91–101.
[13] E. Caliman, J.A. Dias, S.C.L. Dias, A.G.S. Prado, Catal. Today 107–108 (2005)
16–825.
14] D.P. Sawant, A. Vinub, N.E. Jacob, F. Lefebvre, S.B. Halligudi, J. Catal. 235 (2005)
41–352.
[
[
4
. Conclusions
8
[
The catalyst Fe@Si-PW was prepared using different solvents
3
by the impregnation-evaporation technique. The results clearly
indicated the dependence of acidity, activity and leaching stabil-
ity of supported catalyst on different basic points, as which are
the impregnating solutions, calcination temperatures and the type
of HPA. The best preparation achieved was to impregnate PW on
Fe@Si NPs in MeCN solution, followed by evaporation of solvent
[15] M. Masteri-Farahani, J. Movassagh, F. Taghavi, P. Eghbali, F. Salimi, Chem. Eng.
J. 184 (2012) 342–346.
[
[
16] X. Cui, D. Yao, H. Li, J. Yang, D. Hu, J. Hazard. Mater. 205–206 (2012) 17–23.
17] Z. Zhang, F. Zhang, Q. Zhu, W. Zhao, B. Ma, Y. Ding, J. Colloid Interface Sci. 360
(2011) 189–194.
[18] M. Kooti, M. Afshari, Mater. Res. Bull. 47 (2012) 3473–3478.
[19] Y.L. Shi, W. Qiu, Y. Zheng, J. Phys. Chem. Solids 67 (2006) 2409–2418.
[20] J. Yuan, P. Yue, L. Wang, Powder Technol. 202 (2010) 190–193.
◦
and calcination at 250 C. The Fe@Si-PW NPs are mostly spher-
[21] U. Jeong, X. Teng, Y. Wang, H. Yang, Y. Xia, Adv. Mater. 19 (2007) 33–60.
[
22] S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L.V. Elst, R.N. Muller, Chem. Rev.
08 (2008) 2064–2110.
23] E. Darezereshki, M. Ranjbar, F. Bakhtiari, J. Alloys Compd. 502 (2010) 257–260.
ical in shape and have an average size of approximately 92 nm.
Experiments assessing the stability of supported HPA catalysts
indicated their resistance to leaching by methanol as polar sol-
1
[
[24] W. Stöber, A. Fink, E. Bohn, J. Colloid Interface Sci. 26 (1968) 62–69.
[25] L.A. Parreira, N. Bogdanchikova, A. Pestryakov, T.A. Zepeda, I. Tuzovskaya, M.H.
Farías, E.V. Gusevskaya, Appl. Catal. A: Gen. 397 (2011) 145–152.
vent. The acidity of the samples was determined by NH -TPD
3
and chemisorption of pyridine. The strength and dispersion of the
protons on PW/Fe@Si NPs was considerably high and active sur-
face protons became more available for reactant. Catalytic activity
of HPA/Fe@Si and pure HPA catalysts was examined in oxida-
tive esterification of benzaldehyde with methanol. The Fe@Si-PW
NPs was found as an effective magnetically recoverable hetero-
geneous catalyst for the liquid-phase oxidative esterification of
a wide range of arylaldehydes with hydrogen peroxide as green
oxidant.
[
[
26] C. Noonan, L. Baragwanath, S.J. Connon, Tetrahedron Lett. 49 (2008) 4003–4006.
27] S. Kiyooka, M. Ueno, E. Ishii, Tetrahedron Lett. 46 (2005) 4639–4642.
[28] N.N. Karade, V.H. Budhewar, A.N. Katkar, G.B. Tiwari, ARKIVOC xi (2006)
62–167.
[
1
29] R.K. Sharma, S. Gulati, J. Mol. Catal. A: Chem. 363–364 (2012) 291–303.
30] Y. Diao, R. Yan, S. Zhang, P. Yang, Z. Li, L. Wang, H. Dong, J. Mol. Catal. A: Chem.
303 (2009) 35–42.
[
[
31] J. Otera, Esterification: Methods Reactions and Applications, Wiley, New York,
2003.
[
32] R.C. Larock, Comprehensive Organic Transformations, VCH, New York, NY,
1989.
[
[
33] Y. Deng, D. Qi, C. Deng, X. Zhang, D. Zhao, J. Am. Chem. Soc. 130 (2008) 28–29.
34] J.A. Dias, E. Caliman, S.C.L. Dias, M. Paulo, A.T.C.P. de Souza, Catal. Today 85
Acknowledgments
(
2003) 39–48.
[
[
[
35] T.V. Nguyen, K.J. Kim, O.B. Yang, J. Photochem. Photobiol. A 173 (2005) 56–63.
36] J.G. Highfield, J.B. Moffat, J. Catal. 95 (1985) 108–119.
37] M.T. Pope, Heteropoly and Isopoly Oxometalates, Springer-Verlag, Berlin, 1983.
We thank the Razi University Research Council and Iran National
Science Foundation (INSF) for support of this work.
[38] R. Rinaldi, F.Y. Fujiwara, W. Hölderich, U. Schuchardt, J. Catal. 244 (2006)
[
[
39] C. Pazé, S. Bordiga, A. Zecchina, Langmuir 16 (2000) 8139–8144.
40] E. Rafiee, S. Eavani, S. Rashidzadeh, M. Joshaghani, Inorg. Chim. Acta 362 (2009)
3
555–3562.
41] E. Zhang, Y. Tang, K. Peng, C. Guo, Y. Zhang, Solid State Commun. 148 (2008)
96–500.
[42] D.P. Sawant, A. Vinu, N.E. Jacob, F. Lefebvre, S.B. Halligudi, J. Catal. 235 (2005)
341–352.
[
Supplementary data associated with this article can be
found, in the online version, at http://dx.doi.org/10.1016/j.molcata.
4
2
013.02.024.