Published on Web 08/04/2007
Versatile and Practical Macrocyclic Reagent with Multiple
Hydrogen-Bonding Sites for Chiral Discrimination in NMR
Tadashi Ema,* Daisuke Tanida, and Takashi Sakai*
Contribution from the DiVision of Chemistry and Biochemistry, Graduate School of Natural
Science and Technology, Okayama UniVersity, Tsushima, Okayama 700-8530, Japan
Received May 16, 2007; E-mail: ema@cc.okayama-u.ac.jp
Abstract: Bifunctional macrocycles 1-4 and diamide 5 were designed and synthesized. NMR studies
demonstrated that, among them, receptor 1 functions as the best chiral solvating agent (shift reagent),
which is effective for a wide range of chiral compounds having a carboxylic acid, oxazolidinone, carbonate,
lactone, alcohol, sulfoxide, sulfoximine, sulfinamide, isocyanate, or epoxide functionality. The addition of
only 5 mol % (69 µg, 0.15 mM) of 1 splits the enantiomeric signals of sulfoxide 13. The excellent performance
of 1 as a chiral solvating agent, such as versatility, signal sharpness, high splitting ability, high sensitivity,
wide detection window, and synthetic accessibility, is reported. NMR studies revealed that the principal
binding site of 1 is the two amide NH groups of the lower segment and that the additional binding site is
the pyridyl nitrogen. The V-shaped arrangement of the two 2,6-diacylaminopyridine moieties as constructed
in 1 was found to be much more effective for binding a variety of compounds than the parallel alignment
of the two binding motifs as constructed in 4. The NO2 group in 1 enhanced not only the binding ability but
also the degree of enantioselectivity. Unexpectedly, the comparisons between 1 and 3 enabled us to find
the importance of the relative orientation of the binaphthyl moiety; the orthogonal disposition of the binaphthyl
moiety in 1 most effectively brings about the differential ring-current effect on the chiral guest molecule
bound, which leads to the high degree of chiral discrimination in NMR.
Introduction
complexes often cause signal broadening particularly at a high
magnetic field because of the paramagnetic metal, and some-
times form precipitates via a ligand exchange, while crown
ethers are effective only for amines. In many cases, a large
amount of reagent is needed to give rise to signal splitting.1,2
Because of increasing opportunities for asymmetric synthesis,
a quick and facile way of determining the enantiomeric purity
is required. Chiral solvating agents and shift reagents essentially
have good potential for this purpose because the enantiomeric
purity can be determined just by adding the reagent to a chiral
compound in a small amount of deuterated solvent.1,2 In a rare
but ideal case, a catalytic amount of reagent is enough for chiral
discrimination in NMR. Therefore, chiral solvating agents have
an advantage over chiral derivatizing agents,3 which are used
in excess for derivatization before analysis, and over chiral
HPLC, which consumes much more solvent.
(7) (a) Yanagihara, R.; Tominaga, M.; Aoyama, Y. J. Org. Chem. 1994, 59,
6865-6867. (b) Zheng, Y.-S.; Zhang, C. Org. Lett. 2004, 6, 1189-1192.
(c) Dignam, C. F.; Richards, C. J.; Zopf, J. J.; Wacker, L. S.; Wenzel, T.
J. Org. Lett. 2005, 7, 1773-1776.
(8) (a) Simonato, J.-P.; Chappellet, S.; Pe´caut, J.; Baret, P.; Marchon, J.-C.
New J. Chem. 2001, 25, 714-720. (b) Claeys-Bruno, M.; Toronto, D.;
Pe´caut, J.; Bardet, M.; Marchon, J.-C. J. Am. Chem. Soc. 2001, 123, 11067-
11068. (c) Schwenninger, R.; Schlo¨gl, J.; Maynollo, J.; Gruber, K.;
Ochsenbein, P.; Bu¨rgi, H.-B.; Konrat, R.; Kra¨utler, B. Chem.-Eur. J. 2001,
7, 2676-2686. (d) Ema, T.; Ouchi, N.; Doi, T.; Korenaga, T.; Sakai, T.
Org. Lett. 2005, 7, 3985-3988.
(9) Reagents making use of hydrogen bonding: (a) Deshmukh, M.; Dun˜ach,
E.; Juge, S.; Kagan, H. B. Tetrahedron Lett. 1984, 25, 3467-3470. (b)
Bilz, A.; Stork, T.; Helmchen, G. Tetrahedron: Asymmetry 1997, 8, 3999-
4002. (c) Pakulski, Z.; Demchuk, O. M.; Kwiatosz, R.; Osinski, P. W.;
Swierczynska, W.; Pietrusiewicz, K. M. Tetrahedron: Asymmetry 2003,
14, 1459-1462. (d) Sada, K.; Tateishi, Y.; Shinkai, S. Chem. Lett. 2004,
33, 582-583. (e) Yang, D.; Li, X.; Fan, Y.-F.; Zhang, D.-W. J. Am. Chem.
Soc. 2005, 127, 7996-7997. (f) Cuevas, F.; Ballester, P.; Perica`s, M. A.
Org. Lett. 2005, 7, 5485-5487. (g) Koscho, M. E.; Pirkle, W. H.
Tetrahedron: Asymmetry 2005, 16, 3345-3351. (h) Ema, T.; Tanida, D.;
Sakai, T. Org. Lett. 2006, 8, 3773-3775. (i) Gonza´lez-AÄ lvarez, A.; Alfonso,
I.; Gotor, V. Tetrahedron Lett. 2006, 47, 6397-6400. (j) Ma, F.; Ai, L.;
Shen, X.; Zhang, C. Org. Lett. 2007, 9, 125-127.
(10) Reagents making use of π-π stacking: (a) Uccello-Barretta, G.; Balzano,
F.; Martinelli, J.; Berni, M.-G.; Villani, C.; Gasparrini, F. Tetrahedron:
Asymmetry 2005, 16, 3746-3751. (b) Palomino-Scha¨tzlein, M.; Virgili,
A.; Gil, S.; Jaime, C. J. Org. Chem. 2006, 71, 8114-8120. (c) Pe´rez-
Trujillo, M.; Virgili, A. Tetrahedron: Asymmetry 2006, 17, 2842-2846.
(11) Reagents making use of ion pairing: (a) Lacour, J.; Ginglinger, C.; Favarger,
F.; Torche-Haldimann, S. Chem. Commun. 1997, 2285-2286. (b) Lacour,
J.; Vial, L.; Herse, C. Org. Lett. 2002, 4, 1351-1354. (c) Hebbe, V.;
Londez, A.; Goujon-Ginglinger, C.; Meyer, F.; Uziel, J.; Juge´, S.; Lacour,
J. Tetrahedron Lett. 2003, 44, 2467-2471.
Various types of chiral solvating agents or shift reagents have
been reported, such as lanthanide complexes,2,4 cyclodextrins,5
crown ethers,6 calixarenes,7 porphyrins,8 and others.1,9-11 Al-
though a few of them are commercially available, the lanthanide
(1) Weisman, G. R. In Asymmetric Synthesis; Morrison, J. D., Ed.; Academic
Press: New York, 1983; Vol. 1.
(2) Fraser, R. R. In Asymmetric Synthesis; Morrison, J. D., Ed.; Academic
Press: New York, 1983; Vol. 1.
(3) (a) Dale, J. A.; Mosher, H. S. J. Am. Chem. Soc. 1973, 95, 512-519. (b)
Yamaguchi, S. In Asymmetric Synthesis; Morrison, J. D., Ed.; Academic
Press: New York, 1983; Vol. 1. (c) Seco, J. M.; Quin˜oa´, E.; Riguera, R.
Chem. ReV. 2004, 104, 17-117.
(4) Inamoto, A.; Ogasawara, K.; Omata, K.; Kabuto, K.; Sasaki, Y. Org. Lett.
2000, 2, 3543-3545.
(5) Wenzel, T. J.; Amonoo, E. P.; Shariff, S. S.; Aniagyei, S. E. Tetrahedron:
Asymmetry 2003, 14, 3099-3104.
(6) (a) Wenzel, T. J.; Thurston, J. E. J. Org. Chem. 2000, 65, 1243-1248. (b)
Wenzel, T. J.; Freeman, B. E.; Sek, D. C.; Zopf, J. J.; Nakamura, T.;
Yongzhu, J.; Hirose, K.; Tobe, Y. Anal. Bioanal. Chem. 2004, 378, 1536-
1547. (c) Lovely, A. E.; Wenzel, T. J. Tetrahedron: Asymmetry 2006, 17,
2642-2648.
9
10.1021/ja073476s CCC: $37.00 © 2007 American Chemical Society
J. AM. CHEM. SOC. 2007, 129, 10591-10596
10591