Article
Biochemistry, Vol. 49, No. 17, 2010 3781
SUPPORTING INFORMATION AVAILABLE
18. Rea, D., Hovington, R., Rakus, J. F., Gerlt, J. A., Fulop, V., Bugg,
T. D., and Roper, D. I. (2008) Crystal structure and functional
assignment of YfaU, a metal ion dependent class II aldolase from
Escherichia coli K12. Biochemistry 47, 9955–9965.
19. Forouhar, F., Hussain, M., Farid, R., Benach, J., Abashidze, M.,
Edstrom, W. C., Vorobiev, S. M., Xiao, R., Acton, T. B., Fu, Z., Kim,
J. J., Miziorko, H. M., Montelione, G. T., and Hunt, J. F. (2006)
Crystal structures of two bacterial 3-hydroxy-3-methylglutaryl-CoA
lyases suggest a common catalytic mechanism among a family of TIM
barrel metalloenzymes cleaving carbon-carbon bonds. J. Biol. Chem.
281, 7533–7545.
20. Tatusov, R. L., Natale, D. A., Garkavtsev, I. V., Tatusova, T. A.,
Shankavaram, U. T., Rao, B. S., Kiryutin, B., Galperin, M. Y.,
Fedorova, N. D., and Koonin, E. V. (2001) The COG database: new
developments in phylogenetic classification of proteins from complete
genomes. Nucleic Acids Res. 29, 22–28.
Facial selection of the carbonyl donor pyruvate enolate in
aldol addition reaction of 4-hydroxy-2-oxopentanoate (HOPA)
by HpaI and BphI (Figure S1), Lineweaver-Burk plots of HpaI
and BphI in the aldol addition reaction (Figure S2), Lineweaver-
Burk plots of the product inhibition of HpaI and BphI in the
HOPA aldol cleavage reaction (Figure S3), HPLC and Q-Tof-
MS analysis of products synthesized by aldolases (Table S1), and
optical rotation and NMR analysis of HOPA produced in aldol
addition reaction by HpaI and BphI (Table S2). This material is
21. Tatusov, R. L., Galperin, M. Y., Natale, D. A., and Koonin, E. V.
(2000) The COG database: a tool for genome-scale analysis of protein
functions and evolution. Nucleic Acids Res. 28, 33–36.
22. Rea, D., Fulop, V., Bugg, T. D., and Roper, D. I. (2007) Structure and
mechanism of HpcH: a metal ion dependent class II aldolase from the
homoprotocatechuate degradation pathway of Escherichia coli. J.
Mol. Biol. 373, 866–876.
23. Manjasetty, B. A., Powlowski, J., and Vrielink, A. (2003) Crystal
structure of a bifunctional aldolase-dehydrogenase: sequestering a
reactive and volatile intermediate. Proc. Natl. Acad. Sci. U.S.A. 100,
6992–6997.
24. Takayama, S., McGarvey, G. J., and Wong, C. H. (1997) Microbial
aldolases and transketolases: new biocatalytic approaches to simple
and complex sugars. Annu. Rev. Microbiol. 51, 285–310.
25. Samland, A. K., and Sprenger, G. A. (2006) Microbial aldolases as
C-C bonding enzymes;unknown treasures and new developments.
Appl. Microbiol. Biotechnol. 71, 253–264.
REFERENCES
1. Furukawa, K., and Kimura, N. (1995) Biochemistry and genetics of
PCB metabolism. Environ. Health Perspect. 103 (Suppl. 5), 21–23.
2. Diaz, E. (2004) Bacterial degradation of aromatic pollutants: a
paradigm of metabolic versatility. Int. Microbiol. 7, 173–180.
3. Van der Geize, R., Yam, K., Heuser, T., Wilbrink, M. H., Hara, H.,
Anderton, M. C., Sim, E., Dijkhuizen, L., Davies, J. E., Mohn, W. W.,
and Eltis, L. D. (2007) A gene cluster encoding cholesterol catabolism
in a soil actinomycete provides insight into Mycobacterium tubercu-
losis survival in macrophages. Proc. Natl. Acad. Sci. U.S.A. 104,
1947–1952.
4. Furukawa, K., Hirose, J., Suyama, A., Zaiki, T., and Hayashida, S.
(1993) Gene components responsible for discrete substrate specificity
in the metabolism of biphenyl (bph operon) and toluene (tod operon).
J. Bacteriol. 175, 5224–5232.
5. Furukawa, K., Simon, J. R., and Chakrabarty, A. M. (1983) Common
induction and regulation of biphenyl, xylene/toluene, and salicylate
catabolism in Pseudomonas paucimobilis. J. Bacteriol. 154, 1356–1362.
6. Baker, P., Pan, D., Carere, J., Rossi, A., Wang, W., and Seah, S. Y.
(2009) Characterization of an aldolase-dehydrogenase complex that
exhibits substrate channeling in the polychlorinated biphenyls degra-
dation pathway. Biochemistry 48, 6551–6558.
26. Pollard, J. R., Rialland, D., and Bugg, T. D. (1998) Substrate
selectivity and biochemical properties of 4-hydroxy-2-keto-pentanoic
acid aldolase from Escherichia coli. Appl. Environ. Microbiol. 64,
4093–4094.
27. Cornish-Bowden, A. (1995) Analysis of Enzyme Kinetic Data, Oxford
University Press, New York.
7. Prieto, M. A., Diaz, E., and Garcia, J. L. (1996) Molecular character-
ization of the 4-hydroxyphenylacetate catabolic pathway of Escher-
ichia coli W: engineering a mobile aromatic degradative cluster.
J. Bacteriol. 178, 111–120.
8. Wang, W., and Seah, S. Y. (2005) Purification and biochemical
characterization of a pyruvate-specific class II aldolase, HpaI.
Biochemistry 44, 9447–9455.
9. Wang, W., and Seah, S. Y. (2008) The role of a conserved histidine
residue in a pyruvate-specific class II aldolase. FEBS Lett. 582, 3385–
3388.
28. Cornish-Bowden, A. (1995) Fundamentals of Enzyme Kinetics,
Portland Press, London.
29. Eswar, N., John, B., Mirkovic, N., Fiser, A., Ilyin, V. A., Pieper, U.,
Stuart, A. C., Marti-Renom, M. A., Madhusudhan, M. S., Yerkovich,
B., and Sali, A. (2003) Tools for comparative protein structure
modeling and analysis. Nucleic Acids Res. 31, 3375–3380.
30. Eswar, N., Webb, B., Marti-Renom, M. A., Madhusudhan, M. S.,
Eramian, D., Shen, M. Y., Pieper, U., Sali, A. (2006) Comparative
protein structure modeling using Modeller, Current Protocols in
Bioinformatics, Chapter 5, Unit 5 6.
10. Ash, D. E., Emig, F. A., Chowdhury, S. A., Satoh, Y., and Schramm,
V. L. (1990) Mammalian and avian liver phosphoenolpyruvate
carboxykinase. Alternate substrates and inhibition by analogues of
oxaloacetate. J. Biol. Chem. 265, 7377–7384.
11. Gallo, A. A., and Sable, H. Z. (1973) Rate enhancement of pyruvate
aldolization by divalent cations: a model for class II aldolases.
Biochim. Biophys. Acta 302, 443–456.
12. Izard, T., and Blackwell, N. C. (2000) Crystal structures of the metal-
dependent 2-dehydro-3-deoxy-galactarate aldolase suggest a novel
reaction mechanism. EMBO J. 19, 3849–3856.
13. Choi, K. H., Shi, J., Hopkins, C. E., Tolan, D. R., and Allen, K. N.
(2001) Snapshots of catalysis: the structure of fructose-1,6-(bis)-
phosphate aldolase covalently bound to the substrate dihydroxyace-
tone phosphate. Biochemistry 40, 13868–13875.
31. Eswar, N., Eramian, D., Webb, B., Shen, M. Y., and Sali, A. (2008)
Protein structure modeling with MODELLER. Methods Mol. Biol.
426, 145–159.
32. Pawlowski, M., Gajda, M. J., Matlak, R., and Bujnicki, J. M. (2008)
MetaMQAP: a meta-server for the quality assessment of protein
models. BMC Bioinf. 9, 403.
33. DeLano, W. L. (2002) The PyMOL Molecular Graphics System,
DeLano Scientific, San Carlos, CA.
34. Collinsworth, W. L., Chapman, P. J., and Dagley, S. (1973) Stereo-
specific enzymes in the degradation of aromatic compounds by
Pseudomonas putida. J. Bacteriol. 113, 922–931.
35. Cleland, W. W., and Cook, P. F. (2007) Enzyme Kinetics and
Mechanism, Garland Science, New York, NY.
36. Lamble, H. J., Heyer, N. I., Bull, S. D., Hough, D. W., and Danson,
M. J. (2003) Metabolic pathway promiscuity in the archaeon Sulfo-
lobus solfataricus revealed by studies on glucose dehydrogenase and
2-keto-3-deoxygluconate aldolase. J. Biol. Chem. 278, 34066–34072.
37. Dunn, M. F., Aguilar, V., Brzovic, P., Drewe, W. F., Jr., Houben,
K. F., Leja, C. A., and Roy, M. (1990) The tryptophan synthase
bienzyme complex transfers indole between the alpha- and beta-sites
14. Heine, A., Luz, J. G., Wong, C. H., and Wilson, I. A. (2004) Analysis
of the class I aldolase binding site architecture based on the crystal
˚
structure of 2-deoxyribose-5-phosphate aldolase at 0.99A resolution.
J. Mol. Biol. 343, 1019–1034.
15. Morse, D. E., and Horecker, B. L. (1968) The mechanism of action of
aldolases. Adv. Enzymol. Relat. Areas Mol. Biol. 31, 125–181.
16. Schmitzberger, F., Smith, A. G., Abell, C., and Blundell, T. L. (2003)
Comparative analysis of the Escherichia coli ketopantoate hydroxy-
methyltransferase crystal structure confirms that it is a member of the
(betaalpha)8 phosphoenolpyruvate/pyruvate superfamily. J. Bacter-
iol. 185, 4163–4171.
17. Narayanan, B. C., Niu, W., Han, Y., Zou, J., Mariano, P. S.,
Dunaway-Mariano, D., and Herzberg, O. (2008) Structure and func-
tion of PA4872 from Pseudomonas aeruginosa, a novel class of
oxaloacetate decarboxylase from the PEP mutase/isocitrate lyase
superfamily. Biochemistry 47, 167–182.
˚
via a 25-30 A long tunnel. Biochemistry 29, 8598–8607.
38. Casino, P., Niks, D., Ngo, H., Pan, P., Brzovic, P., Blumenstein, L.,
Barends, T. R., Schlichting, I., and Dunn, M. F. (2007) Allosteric
regulation of tryptophan synthase channeling: the internal aldimine
probed by trans-3-indole-30-acrylate binding. Biochemistry 46, 7728–7739.
39. Ngo, H., Kimmich, N., Harris, R., Niks, D., Blumenstein, L., Kulik,
V., Barends, T. R., Schlichting, I., and Dunn, M. F. (2007) Allosteric
regulation of substrate channeling in tryptophan synthase: modula-
tion of the L-serine reaction in stage I of the beta-reaction by alpha-site
ligands. Biochemistry 46, 7740–7753.