1296 Biomacromolecules, Vol. 11, No. 5, 2010
Cuetos et al.
highly efficient for the stereoselective bioreductions of several
aliphatic and aromatic ketones in aqueous media showing a good
thermal stability and an excellent recycling capacity, being
equally active after three months of storage. For the immobilized
CAL-B, this material showed a higher activity than the pure
lipase to achieve kinetic resolutions on organic solvents and a
moderately good capability of reutilization.
Acknowledgment. A.C. thanks Universidad de Oviedo for
a predoctoral fellowship. I.L. thanks Principado de Asturias for
personal funding (Clar´ın Program). Financial support from the
Spanish Ministerio de Ciencia e Innovacio´n (MICINN, Projects
CTQ2007-61126andCTQ2007-61188)isgratefullyacknowledged.
Figure 1. Stability study of 5 vs time in the bioreduction of acetophe-
none. Three consecutive catalytic cycles were performed and then 5
was kept for 30 days at -20 °C until the next three catalytic cycles
were done.
Supporting Information Available. Experimental proce-
dures, analytics, and H NMR and TGA copies are provided.
This material is available free of charge via the Internet at http://
pubs.acs.org.
1
Scheme 6. Enzymatic Acylation of 1-Phenylethanol Using
Immobilized CAL-B (6) and Vinyl Acetate
References and Notes
(1) (a) Synthesis and Applications of Poly(organophosphazenes); Gleria,
M., De Jaeger, R., Eds.; Nova Sci.: New York, 2004. (b) Allcock,
H. R. Chemistry and Applications of Polyphosphazenes; Wiley: New
York, 2003.
(2) (a) Polyphosphazenes for Biochemical Applications; Andrianov, A.,
Ed.; Wiley: Hoboken, 2009. (b) See ref 1b, Chapter 15, p 516.
(3) See Carriedo G. A. Synthesis and Chemical Regularity in Phosphazene
Copolymers; in ref 2a, Chapter 19, p 379.
(4) Andrianov, A. K.; Marin, A.; Chen, J.; Sargent, J.; Corbett, N.
Macromolecules 2004, 37, 4075.
(5) Carriedo, G. A.; Garc´ıa Alonso, F. J.; Gonza´lez, P. A.; Go´mez Elipe,
P. Polyhedron 1999, 18, 2853.
(6) See the recent reviews: (a) Hanefeld, U.; Gardossi, L.; Magner, E.
Chem. Soc. ReV. 2009, 38, 453. (b) Sheldon, R. A. AdV. Synth. Catal.
2007, 349, 1289.
(7) (a) Wong, L. S.; Khan, F.; Micklefield, J. Chem. ReV. 2009, 109, 4025.
(b) Cao, L. Curr. Opin. Chem. Biol. 2005, 9, 217. (c) Bornscheuer,
U. T. Angew. Chem., Int. Ed. 2003, 42, 3336. (d) Katchalski-Katzir,
E. Trends Biotechnol. 1993, 11, 471.
(8) Allcock, H. R.; Kwon, S. Macromolecules 1986, 19, 1502.
(9) Matsuki, T.; Saiki, N. Patent JP 01030650 and CAN 112:32652, 1989.
(10) Allcock, H. R.; Pucher, S. R.; Visscher, K. B. Biomaterials 1994, 15,
502.
rac-1-phenylethanol (8) with vinyl acetate (3 equiv) in TBME
at 30 °C (Scheme 6) to achieve the kinetic resolution of this
substrate. We confirmed that immobilized CAL-B was able to
perform this reaction with high selectivity (c ) 49%), affording
both enantiopure substrate and product after 24 h. Interestingly,
under the same conditions, commercial pure CAL-B afforded
a conversion of 17%, evidencing an important stability enhance-
ment for this lipase.
To determine the recycling potential of this novel biocatalyst,
it was reutilized several times for the kinetic resolution of rac-8
in TBME (Figure 2). The results showed a progressive loss of
activity, although, after 5 cycles, the conversions were still
higher than 35%.
(11) (a) Modern Biocatalysis; Fessner, W.-D., Anthonsen, T., Eds.; Wiley-
VCH: Weinheim, 2009. (b) Asymmetric Organic Synthesis with
Enzymes; Gotor, V., Alfonso, I., Garc´ıa-Urdiales, E., Eds.; Wiley-
VCH: Weinheim, 2008. (c) Gotor, V. Org. Process Res. DeV. 2002,
6, 420.
Conclusions
The novel polyphosphazene derivative {NP[O2C12H7.5-
(NH2)0.5]}n, prepared by reduction of the nitro precursor with
the Lalancette’s reagent, can be advantageously used to
synthesize carriers for biocatalysts such as alcohol dehydroge-
nases and lipases. The covalent attachment of the enzymes was
achieved using glutaraldehyde as linker. Several reaction
parameters were optimized to obtain good catalytic activities
for both preparations. In the case of ADH-A, the catalyst was
(12) Faber, K. Biotransformations in Organic Chemistry, 5th ed.; Springer:
Berlin, 2004.
(13) See the recent bibliography: (a) Patel, R. N. Coord. Chem. ReV. 2008,
252, 659. (b) Gotor-Ferna´ndez, V.; Rebolledo, F.; Gotor, V. In
Biocatalysis in the Pharmaceutical and Biotechnology Industries; Patel,
R. N., Ed.; CRC Press: Boca Raton, FL, 2006; Chapter 7, p 203. (c)
Gotor-Ferna´ndez, V.; Brieva, R.; Gotor, V. J. Mol. Catal. B: Enzym.
2006, 40, 111.
(14) Gotor-Ferna´ndez, V.; Busto, E.; Gotor, V. AdV. Synth. Catal. 2006,
348, 797.
(15) Recent bibliography: (a) Buchholz, S.; Gro¨ger, H. Biocatalysis in the
Pharmaceutical and Biotechnology Industry; Patel, R. N., Ed.; CRC
Press: Boca Raton, FL, 2007; p 757. (b) de Wildeman, S. M. A.; Sonke,
T.; Schoemaker, H. E.; May, O. Acc. Chem. Res. 2007, 40, 1260. (c)
Moore, J. C.; Pollard, D. J.; Kosjek, B.; Devine, P. N. Acc. Chem.
Res. 2007, 40, 1412. (d) Kroutil, W.; Mang, H.; Edegger, K.; Faber,
K. Curr. Opin. Chem. Biol. 2004, 8, 120.
(16) (a) Bisogno, F. R.; Lavandera, I.; Kroutil, W.; Gotor, V. J. Org. Chem.
2009, 74, 1730. (b) Kurina-Sanz, M.; Bisogno, F. R.; Lavandera, I.;
Orden, A. A.; Gotor, V. AdV. Synth. Catal. 2009, 351, 1842. (c)
Edegger, K.; Gruber, C. C.; Poessl, T. M.; Wallner, S. R.; Lavandera,
I.; Faber, K.; Niehaus, F.; Eck, J.; Oehrlein, R.; Hafner, A.; Kroutil,
W. Chem. Commun. 2006, 2402. (d) Edegger, K.; Stampfer, W.;
Seisser, B.; Faber, K.; Mayer, S. F.; Oerhrlein, R.; Hafner, A.; Kroutil,
W. Eur. J. Org. Chem. 2006, 8, 1904. (e) Stampfer, W.; Kosjek, B.;
Faber, K.; Kroutil, W. J. Org. Chem. 2003, 68, 402. (f) Stampfer,
Figure 2. Recycling study of 6 in the lipase-catalyzed acylation of
rac-8 (t ) 24 h).