needed to be able to introduce functionality in the six-
membered ring, and clearly this could most easily be done
through disconnection B with suitably substituted alkenes.
Furthermore, unlike disconnection A, disconnection B would
enable us to easily access enantiomerically pure material as
Scheme 3. Enol Ether Preparation and Attempts at RCMa
4
could potentially be obtained from L-pyroglutamic acid.
Pyroglutamic acid was first converted into the known
7
j
aminal 6 in four steps. Treatment with BF
3 2
‚OEt and
a
(
i) TiCl
4
(4.0 equiv), TMEDA (8 equiv), Zn (9 equiv), PbCl
Br (2.2 equiv), 25 °C, 4.5 h, THF, 45%. (ii)
2
allyltrimethylsilane gave the required cis product as the major
diastereomer (Scheme 2).7
(
0.046 equiv), CH
RCM.
2
2
13
to effect RCM using the Ru and Mo catalysts I, II, III,11
9
10
Scheme 2. Preparation of Allyl-ester 7a
1
2
13
and IV (Figure 2). Only unreacted starting material was
a
i
(
i) Pr
h. (ii) BOC
h, 92% over two steps. (iii) LiEt
h, 88%. (iv) MeOH, pTSA (0.1 equiv), 25 °C, 5 h, 98%. (v)
BF .OEt (1.03 equiv), allyltrimethylsilane (4.5 equiv), -78 to 25
C, Et O, 15 h, 93% (80:20, cis:trans).
2
EtN (1.2 equiv), BnBr (1.0 equiv), 0 to 55 °C, CH
O (1.2 equiv), DMAP (0.1 equiv), 25 °C, MeCN, 3
BH (1.2 equiv), -78 °C, THF, 2
2 2
Cl ,
5
2
3
3
2
°
2
The ester was converted into the enol ether 8 by the
8
modified Takai procedure (Scheme 3), but we were unable
Figure 2. Structures of the 1st, 2nd, and 3rd generation Grubbs
and Schrocks catalysts.
(3) For reviews of RCM, see: (a) Grubbs, R. H.; Chang, S. Tetrahedron
1
1
3
998, 54, 4413-4450. (b) Armstrong, S. K. J. Chem. Soc., Perkin Trans.
1998, 371-388. (c) Phillips, A. J.; Abell, A. D. Aldrichimica Acta 1999,
2, 75-89. (d) F u¨ rstner, A. Angew. Chem., Int. Ed. 2000, 39, 3012-3043.
observed. To determine whether active catalyst was still
present, dimethyl diallymalonate was added to the reaction
mixture after 1 h. Rapid ring closure of the malonate proved
that the catalyst had not become deactivated by the enol ether
or other adventitious impurities.
(e) Maier, M. E. Angew. Chem., Int. Ed. 2000, 39, 2073-2077. (f) Trnka,
T. M.; Grubbs, R. H. Acc. Chem. Res. 2001, 34, 18-29. (g) Semeril, D.;
Bruneau, C.; Dixneuf, P. H. AdV. Synth. Catal. 2002, 344, 585-595. (h)
Poulsen, C. S.; Madsen, R. Synthesis 2003, 1, 1-18. (i) Hoveyda A. H.;
Gillingham D. G.; Van Veldhuizen J. J.; Kataoka O.; Garber S. B.;
Kingsbury J. S.; Harrity J. P. A. Org. Biomol. Chem. 2004, 2, 8-23.
(
4) Neipp, C. E.; Martin, S. F. J. Org. Chem. 2003, 68, 8867-8878 and
references therein.
5) For a review, see: Hoffman, R. W. Chem. ReV. 1989, 89, 1841-
860.
To test whether the problem lay with enol ether metathesis
(which is known to be a more difficult cyclization than
(
1
14
simple diene metathesis) or substrate conformation, we
(
6) Neipp, C. E.; Martin, S. F. Tetrahedron Lett. 2002, 43, 1779-1782.
(7) Although this reaction has been described to furnish a 95:5 (cis:trans)
prepared diene 10, and this time RCM occurred uneventfully
to give the bridged azabicycle 11 in good yield (Scheme 4).
This showed that our strategy for controlling the diaxial
conformation had been successful, but to easily access the
enone required for the synthesis of ferruginine we needed a
ratio of diastereomers we have not been able to reproduce this result (80:
0, cis:trans obtained). See: (a) Shono, T.; Fujita, T.; Matsumura, Y. Chem.
Lett. 1991, 81-84. (b) Ma, D.; Yang, J. J. Am. Chem. Soc. 2001, 123,
706-9707. Other workers have also reported levels of selectivity similar
to our own. See: (c) Chiesa, M. V.; Manzoni, L.; Scalastico, C. Synlett
2
9
1
3
1
2
996, 441-443. (d) Beal, L. M.; Moeller, K. D. Tetrahedron Lett. 1998,
9, 4639-4642. (e) Grossmith, C. E.; Senia, F.; Wagner, J. Synlett 1999,
0, 1660-1662. (f) Mulzer, J.; Schulzchen, F.; Bats, J.-W. Tetrahedron
000, 56, 4289-4298. (g) Tong, Y.; Forbian, Y. M.; Wu, M.; Boyd, N.
(10) Scholl, M.; Ding, S.; Lee, C. W.; Grubbs, R. H. Org. Lett. 1999, 1,
953-956.
D.; Moeller, K. D. J. Org. Chem. 2000, 65, 2484-2493. (h) Manzoni, L.;
Colombo, M.; May, E.; Scolastico, C. Tetrahedron 2001, 57, 249-255. (i)
Zhang, X.; Schmitt, A. C.; Jiang, W. Tetrahedron Lett. 2001, 42, 5335-
(11) Love, J. A.; Morgan, J. P.; Trnka, T. M.; Grubbs, R. H. Angew.
Chem., Int. Ed. 2002, 41, 4035-4037.
(12) Murdzek, J. S.; Schrock, R. R. Organometallics 1987, 6, 1373-
1374.
5
2
338. (j) Kim, S.; Hayashi, K.; Kitano, Y.; Tada, M.; Chiba, K. Org. Lett.
002, 4, 3735-3737. (k) Harris, P. W. R.; Brimble, M. A.; Gluckman, P.
(13) Grubbs 1st, 2nd, and 3rd generation catalysts in either dichlo-
romethane or benzene, Schrocks catalyst in degassed pentane, at both room
temperature and reflux, with concentrations ranging from 0.005 to 0.1 M.
(14) (a) Louie, J.; Grubbs, R. H. Organometallics 2002, 21, 2153-2164
and references therein. (b) Aggarwal, V. K.; Daly, A. D. Chem. Commun.
2002, 2490-2491.
D. Org. Lett. 2003, 5, 1847-1850.
(
8) Takai, K.; Kataoka, Y.; Miyai, J.; Okazoe, T.; Oshima, K.; Utimoto,
K. Org. Synth. 1996, 73, 73-84.
9) Schwab, P.; France, M. B.; Ziller, J. W.; Grubbs, R. H. Angew. Chem.,
Int. Ed. Engl. 1995, 34, 2039-2041.
(
1470
Org. Lett., Vol. 6, No. 9, 2004